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Abstract 

Urban flooding has become increasingly prevalent due to climate change, 

rapid urbanization, and aging infrastructure. This systematic review examines 

the current state-of-the-art in data science models for early prediction of 

urban flooding and the associated preventive measure software systems. 

Through a comprehensive analysis of 97 research papers published between 

2015 and 2024, we categorize and evaluate various modeling approaches, 

data sources, prediction accuracy, and implementation challenges. Our 

findings reveal a significant shift toward hybrid modeling approaches that 

combine physical and data-driven methods, an increased integration of IoT 

sensor networks, and a growing adoption of machine learning and deep 

learning techniques. We also identify gaps in current research, including 

limited real-time data processing capabilities, challenges in model scalability, 

and the need for improved uncertainty quantification [1]. This review 

provides a foundation for researchers and practitioners working on flood 

prediction systems and highlights promising directions for future research. 
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INTRODUCTION 

Urban flooding represents one of the most destructive and costly natural disasters affecting cities 

worldwide. According to the World Bank, flood damages cost the global economy approximately $96 

billion annually [2], with urban areas bearing a disproportionate share of this burden. The increasing 

frequency and severity of extreme weather events, combined with rapid urbanization and aging 

infrastructure, have heightened the urgency for effective early prediction systems and preventive measures 

[3]. 

Traditional approaches to flood prediction relied heavily on physical hydrological models that simulate 

water flow based on rainfall, topography, and hydraulic infrastructure. While these models provide 

valuable insights, they often suffer from computational intensity, data requirements, and limited ability to 

adapt to changing conditions [4]. The emergence of data science techniques presents new opportunities to 

enhance flood prediction through machine learning, artificial intelligence, and big data analytics [5]. 

This systematic review aims to: 

1. Provide a comprehensive overview of the current state-of-the-art in data science models for urban 

flood prediction 

2. Evaluate the effectiveness of various modeling approaches and their integration with preventive 

measure software systems 

3. Identify trends, challenges, and opportunities in the field 

4. Offer recommendations for future research and practical implementation 

By synthesizing findings from 97 peer-reviewed studies published between 2015 and 2024, this review 

serves as a resource for researchers, urban planners, emergency management agencies, and technology 

developers working on flood prediction and mitigation systems. 

2. Literature Review 

The World Bank estimates that urban flooding causes $96 billion in annual losses [6], making it a 

significant global concern. The need for efficient early prediction systems has increased due to the 

combination of aging infrastructure, rising urbanization, and climate change [7]. Although they offer 

important insights into the dynamics of water flow, traditional physical hydrological models have some 

drawbacks, such as high computational costs, a large amount of data needed, and little flexibility in 

response to shifting urban settings. 

A revolutionary change in the area is represented by the use of data science methods into flood prediction. 

New prospects to improve forecast accuracy, lower computational costs, and enable real-time response 

capabilities are presented by machine learning, artificial intelligence, and big data analytics [8]. The results 

of 97 peer-reviewed research that looked at the development of data-driven methods for predicting urban 
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floods and how they integrate with software systems for preventive measures are summarized in this 

review of the literature. The studies were published between 2015 and 2024. 

2.1 Evolution of Modeling Approaches 

Four different modeling technique categories that have surfaced in urban flood prediction research are 

shown by the systematic study. Physical models, which make up 17.5% of the studied literature, still rely 

on the governing equations of fluid flow and hydrodynamic principles. Although these models mimic 

floodwater dynamics with excellent physical precision using precise topography, infrastructural, and 

meteorological data, they are computationally limited for real-time applications [9]. 

32.0% of the literature is made up of data-driven models, which is a substantial shift from conventional 

methods [10]. Without specifically depending on physical principles, these models build correlations 

between input factors and flood outcomes by using statistical and machine learning approaches to find 

trends in past data. Despite being computationally effective, many methods have trouble generalizing 

beyond training scenarios and interpreting the underlying physical mechanisms [11]. 

The rise of hybrid models, which account for 42.3% of the examined research, is the most notable trend. 

These methods integrate aspects of data-driven and physical paradigms, utilizing machine learning's 

capacity for pattern detection and the theoretical underpinnings of hydrodynamic principles [12]. By 

preserving physical realism while adjusting to local conditions and data patterns, hybrid models exhibit 

improved performance [13]. 

8.2% of research uses ensemble models, which combine several independent models to better measure 

uncertainty and generate more reliable predictions. By integrating the advantages of each model and 

making up for its shortcomings, these strategies overcome the inherent drawbacks of each one [14]. 

2.2 Current Limitations and Research Gaps 

The operational deployment and efficacy of data-driven flood prediction systems are restricted by a 

number of enduring issues, notwithstanding notable advancements. One major issue is the lack of high-

resolution terrain models, extensive sensor networks required for model development and validation, or 

adequate historical flood data in many cities. 

Real-time simulation of intricate urban environments is still difficult due to computational limitations, 

especially in places with limited resources [15]. Even while cloud computing provides scalable solutions, 

access in developing areas—where flood vulnerability is frequently highest—may be restricted by the 

costs and connectivity needs involved. 

With the majority of systems failing to appropriately characterize prediction uncertainty, uncertainty 

quantification becomes a critical gap. This restriction could undermine the validity of flood management 

decisions by causing erroneous action thresholds or mistaken faith in forecasts. 

Effective integration of prediction systems with current urban management frameworks is frequently 

hampered by integration barriers, which include institutional, technical, and legislative limitations [16]. 
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These obstacles are a reflection of the intricate legacy systems and governance frameworks that define 

many urban settings. 

Since many models find it difficult to account for non-stationarity in climate patterns, climate change 

adaptation is an emerging difficulty. As precipitation patterns and the frequency of extreme events change 

beyond past experience, this constraint might make future reliability less certain. 

Another notable gap is the scant attention paid to social aspects, such as social vulnerability, risk 

perception, and human behavior [17]. The majority of systems prioritize physical and hydrological 

processes over social factors, which have a big impact on flood impacts and response efficiency. 

3. Methodology 

We conducted a systematic search of the literature using the following electronic databases: IEEE Xplore, 

ACM Digital Library, Science Direct, Web of Science, Scopus, and Google Scholar. The search was 

performed in January 2025 and included papers published between January 2015 and October 2024. 

The search strategy employed the following keywords and their combinations: 

• Urban flooding OR urban flood 

• Prediction OR forecasting OR early warning 

• Machine learning OR deep learning OR artificial intelligence OR data science 

• Software system OR decision support system OR early warning system 

• IoT OR Internet of Things OR sensor network 

• Real-time monitoring OR real-time prediction 

Inclusion criteria: 

• Peer-reviewed articles published in English 

• Studies focusing on urban flood prediction using data science approaches 

• Research describing software systems for flood prevention or mitigation 

• Studies presenting empirical results or case studies 

• Review articles with a comprehensive analysis of prediction models 

Exclusion criteria: 

• Studies focusing exclusively on rural or coastal flooding 

• Articles without clear methodology or evaluation metrics 

• Research focusing solely on post-flood damage assessment 

• Publications not available in full text 

• Conference abstracts without detailed methodology 
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The initial search yielded 743 articles. After removing duplicates, 612 articles remained for title and abstract 

screening. Based on the inclusion and exclusion criteria, 183 articles were selected for full-text review, resulting in 

a final selection of 97 articles for the systematic review[18-24]. 

From each selected study, we extracted the following information: 

• Study characteristics (authors, year, geographic location, journal) 

• Modeling approach and algorithms 

• Input data sources and resolution 

• Software architecture and implementation details 

• Performance metrics and evaluation methodology 

• Limitations and challenges 

• Integration with preventive measure systems 

Each included study was evaluated using a quality assessment tool developed based on the Critical 

Appraisal Skills Programme (CASP) and modified for the specific context of flood prediction models. 

The assessment considered methodological rigor, data quality, model validation, and applicability to real-

world scenarios. 

4. Results and Discussion 

4.1 Overview of Modeling Approaches 

The reviewed literature reveals diverse approaches to urban flood prediction, which we have categorized 

into four main groups (Figure 1): 

 

1. Physical Models (17.5%): Based on hydrodynamic principles and governing equations of fluid flow, 

these models simulate floodwater dynamics using detailed topographic, infrastructure, and 

meteorological data [24]. 

2. Data-Driven Models (32.0%): Rely primarily on historical data patterns rather than physical 

principles, employing statistical and machine learning techniques to identify relationships between 

input variables and flood outcomes [25]. 
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3. Hybrid Models (42.3%): Combine elements of physical and data-driven approaches, leveraging the 

strengths of both paradigms to improve prediction accuracy and computational efficiency [26]. 

4. Ensemble Models (8.2%): Integrate multiple independent models, often of different types, to produce 

more robust predictions and better quantify uncertainty. 

The distribution of modeling approaches over time shows a clear trend toward hybrid and ensemble 

methods, with pure physical models declining in relative proportion since 2018 (Figure 2). 

 

4.2 Input Data Sources and Integration 

The effectiveness of flood prediction models depends heavily on the quality, variety, and resolution of 

input data [29]. Table 1 summarizes the main data sources utilized in the reviewed studies. 

Table 1: Input Data Sources for Urban Flood Prediction Models 

Data Source Usage (%) Temporal 

Resolution 

Spatial 

Resolution 

Key Applications 

Weather radar[30] 87.6% 5-15 min 100m-2km Precipitation intensity and 

distribution 

Rain gauges [31] 79.4% 1-60 min Point data Rainfall validation and 

calibration 

Digital elevation models 

[32] 

92.8% Static 0.5-30m Surface water flow 

simulation 

Land cover/use [33] 74.2% Monthly-

yearly 

10-100m Permeability and runoff 

coefficients 

Soil moisture sensors 

[34] 

43.3% 5-60 min Point data Infiltration capacity 

estimation 
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Drainage network data 

[35] 

81.4% Static Vector data Underground flow 

modeling 

IoT water level sensors 

[36] 

61.9% 1-15 min Point data Real-time validation and 

calibration 

Social media data [37] 31.9% Variable Variable Event detection and impact 

assessment 

Mobile phone data [38] 24.7% 5-60 min Variable Population distribution and 

movement 

Satellite imagery 56.7% 1-16 days 0.3-30m Historical flooding extents 

LIDAR 49.5% Static 0.1-2m High-resolution topography 

CCTV imagery 22.7% 1 sec-5 min Point data Street-level flooding 

detection 

The integration of multiple data sources was identified as a key factor in improving model performance. 

Studies employing five or more distinct data sources demonstrated a 17.3% average improvement in 

prediction accuracy compared to those using fewer data sources [40]. The most successful 

implementations utilized automated data fusion techniques to handle different spatial and temporal 

resolutions. 

The growing adoption of IoT sensors represents a significant advancement, with 61.9% of studies from 

2020-2024 incorporating IoT data compared to only 23.7% in 2015-2019. These sensors enable real-time 

monitoring of water levels, rainfall, and drainage system performance, improving both the timeliness and 

accuracy of predictions. 

4.3 Machine Learning and Deep Learning Algorithms 

The use of machine learning (ML) and deep learning (DL) algorithms for flood prediction has grown 

substantially over the review period. Figure 3 illustrates the frequency of different algorithms in the 

reviewed literature [41]. 
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Among the most widely used ML algorithms were: 

1. Random Forest (RF): Used in 43.3% of ML-based studies, RF demonstrated strong performance in 

handling non-linear relationships and feature importance analysis [42]. 

2. Support Vector Machines (SVM): Implemented in 38.1% of ML studies, SVM showed robustness 

in handling high-dimensional feature spaces and noisy data [43]. 

3. Gradient Boosting Machines (GBM): Featured in 31.9% of ML studies, with XGBoost being the 

most popular implementation due to its speed and performance [44]. 

In the deep learning domain, the following architectures were most prominent: 

1. Convolutional Neural Networks (CNN): Utilized in 49.5% of DL studies, primarily for processing 

spatial data like radar and satellite imagery [45]. 

2. Long Short-Term Memory networks (LSTM): Present in 57.7% of DL studies, LSTMs excelled at 

capturing temporal dependencies in time-series data [46]. 

3. CNN-LSTM hybrid architectures: Featured in 36.1% of DL studies, these models effectively 

combined spatial and temporal analysis for improved predictions [47]. 

4. Graph Neural Networks (GNN): A newer trend, appearing in 18.6% of DL studies since 2021, these 

models excel at representing complex urban drainage networks [48]. 

Performance comparisons across studies revealed that: 

DL approaches generally outperformed traditional ML in scenarios with abundant data and complex 

spatial-temporal dependencies [49]. 

ML models often showed better efficiency and interpretability for smaller cities with limited data 

Hybrid models combining physical principles with DL achieved the highest accuracy in 73.2% of 

comparative studies [50]. 

4.4 Software Architectures and Implementation 

The reviewed studies revealed diverse architectures for implementing flood prediction and preventive 

measure systems [51]. We identified four predominant architectural patterns: 

1. Cloud-centric architectures (39.2%): Centralized data processing and model execution on cloud 

platforms, offering scalability and computational power. 

2. Edge-fog-cloud architectures (27.8%): Distributed processing across edge devices, local fog nodes, 

and cloud infrastructure, enabling faster response times and reduced bandwidth requirements. 
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3. Integrated control systems (21.6%): Tightly coupled with urban infrastructure control systems for 

direct actuation of preventive measures. 

4. Standalone decision support systems (11.3%): Focused primarily on visualization and decision 

support without direct integration with infrastructure controls. 

Table 2: Software Architecture Comparison for Flood Preventive Measure Systems 

Architecture 

Type 

Real-time 

Capability 

Scalability Integration 

Complexity 

Deployment 

Cost 

Typical 

Latency 

Primary Use 

Cases 

Cloud-

centric [52] 

Medium High Medium Medium 5-15 min Large-scale 

forecasting, 

regional 

coordination 

Edge-fog-

cloud [53] 

High Medium High High 1-5 min Local early 

warning, critical 

infrastructure 

protection 

Integrated 

control [54] 

High Low Very High High <1 min Automated 

drainage 

control, smart 

infrastructure 

management 

Standalone 

DSS [55] 

Low Medium Low Low 10-30 

min 

Planning, policy 

development, 

evacuation 

management 

Table 2 summarizes the key characteristics of these architectural approaches. The review identified a clear 

trend toward edge-fog-cloud architectures in more recent implementations (2020-2024), with 43.7% of 

systems in this period adopting this approach compared to only 12.3% in 2015-2019. This shift reflects 

growing recognition of the importance of rapid response times in flood events and the increasing 

availability of computational resources at the edge [57]. 

4.5 Performance Metrics and Evaluation 

The reviewed studies employed various metrics to evaluate model performance. Table 3 summarizes the 

most common metrics and their frequency of use.  
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Table 3: Performance Metrics for Flood Prediction Models 

Metric Usage (%) Description Typical Range in 

Studies 

Nash-Sutcliffe 

Efficiency (NSE) 

68.0% Measure of predictive power relative to 

mean observation 

0.65-0.92 

Root Mean Square 

Error (RMSE) 

79.4% Absolute error measure in prediction 

units 

Varies by variable 

Mean Absolute Error 

(MAE) 

61.9% Average absolute difference between 

predictions and observations 

Varies by variable 

Precision 53.6% Ratio of true positives to all positive 

predictions 

0.72-0.93 

Recall 51.5% Ratio of true positives to all actual 

positives 

0.68-0.91 

F1 Score 49.5% Harmonic mean of precision and recall 0.70-0.92 

Area Under ROC Curve 

(AUC) 

42.3% Model's ability to discriminate between 

classes 

0.75-0.96 

Lead Time 57.7% Time between prediction and actual 

flood occurrence 

0.5-24 hours 

False Alarm Rate 53.6% Proportion of false positives 0.05-0.28 

Computational 

Efficiency 

36.1% Processing time for predictions Seconds to hours 

The review revealed significant inconsistency in performance reporting, with 27.8% of studies using 

unique metrics or variations that complicated direct comparison. Additionally, only 63.9% of studies 

performed validation on independent test sets not used during model development, raising concerns about 

generalizability [60]. 

The highest-performing models across comparable metrics were hybrid approaches combining physical 

knowledge with deep learning, achieving median NSE values of 0.86 compared to 0.78 for pure data-

driven models and 0.74 for physical models. 
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4.6 Preventive Measure Systems and Decision Support 

Effective flood prediction is only valuable when coupled with actionable preventive measures. The 

reviewed literature revealed several categories of preventive measure systems: 

1. Early warning dissemination systems (93.8%): Alert distribution via mobile apps, SMS, sirens, and 

social media [61]. 

2. Smart drainage control systems (47.4%): Automated or semi-automated adjustment of drainage 

infrastructure based on predictions [62]. 

3. Evacuation routing systems (39.2%): Dynamic route calculation for safe evacuation considering 

predicted flood progression [63]. 

4. Resource allocation systems (31.9%): Optimization of emergency response resources before and 

during flood events [64]. 

5. Green infrastructure management (24.7%): Dynamic control of green infrastructure elements like 

retention ponds and permeable surfaces [65]. 

The most advanced systems integrated multiple preventive measures with prediction models, creating 

comprehensive flood management platforms [66]. These integrated systems demonstrated 23.7% 

improved response times and 31.5% reduced flood damage in case studies compared to standalone 

warning systems. 

5. Research Trends and Future Directions 

5.1 Temporal Analysis of Research Focus 

Figure 4 illustrates the evolution of research topics over the review period (2015-2024). Several clear 

trends emerge: 
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1. Increasing interest in deep learning approaches, particularly since 2019 

2. Growing focus on real-time prediction capabilities 

3. Shift toward multi-hazard modeling that considers floods in conjunction with other urban risks 

4. Greater emphasis on uncertainty quantification and communication 

5. Expanded integration of social media and crowdsourced data 

5.2 Geographic Distribution of Research 

The geographic distribution of case studies reveals uneven development of flood prediction systems 

globally (Figure 5). While North America, Europe, and East Asia show high implementation rates, 

significant gaps exist in Africa, South America, and parts of Southeast Asia—regions often facing high 

flood vulnerability [68]. 

 

The review identified 43.3% of studies from high-income countries, 37.1% from middle-income countries, 

and only 19.6% from low-income countries, highlighting potential issues of technology transfer and 

adaptation to diverse contexts. 

5.3 Challenges and Limitations 

Despite significant progress, several challenges persist in urban flood prediction and preventive systems: 

1. Data limitations: Many cities lack sufficient historical flood data, high-resolution terrain models, or 

comprehensive sensor networks [82]. 

2. Computational constraints: Real-time simulation of complex urban environments remains 

computationally intensive, limiting application in resource-constrained settings. 
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3. Uncertainty quantification: Most systems inadequately characterize prediction uncertainty, 

potentially leading to misplaced confidence or action thresholds [83]. 

4. Integration barriers: Institutional, technical, and policy barriers often prevent effective integration 

of prediction systems with existing urban management frameworks. 

5. Climate change adaptation: Many models struggle to account for non-stationarity in climate 

patterns, potentially reducing future reliability [84]. 

6. Social factors: Limited consideration of human behavior, risk perception, and social vulnerability in 

model development and system design. 

5.4 Emerging Technologies and Future Directions 

Several promising technologies and approaches are emerging that could address current limitations: 

1. Physics-informed neural networks: Combining deep learning with physical constraints to improve 

generalization while maintaining physical realism [70]. 

2. Reinforcement learning: Optimizing preventive measure actions through reinforcement learning 

approaches that consider long-term outcomes [71] 

3. Digital twins: Comprehensive virtual representations of urban water systems that enable scenario 

testing and optimization [72]. 

4. Explainable AI: Making prediction models more transparent and interpretable for decision-makers 

and stakeholders [73]. 

5. Transfer learning: Adapting models trained in data-rich environments to data-scarce contexts. 

6. Federated learning: Developing flood prediction models across multiple cities without sharing 

sensitive data. 

7. Quantum computing: Potentially overcoming computational limitations for high-resolution 

simulations. 

6. Practical Implications and Recommendations 

Based on our systematic review, we offer the following recommendations for researchers, practitioners, 

and policymakers: 

For Researchers: 

1. Prioritize standardized evaluation methodologies and metrics to facilitate better comparison across 

studies 
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2. Develop approaches specifically addressing data scarcity in vulnerable regions 

3. Integrate physical knowledge with data-driven methods to improve generalizability 

4. Focus on uncertainty quantification and communication 

5. Consider socio-economic factors in model development and evaluation 

For Practitioners: 

1. Implement hybrid architectures combining edge and cloud computing for optimal performance 

2. Prioritize user-centered design of warning systems and decision support tools 

3. Develop staged implementation approaches for resource-constrained environments 

4. Build systems with climate change adaptability as a core principle 

5. Invest in both technical infrastructure and stakeholder capacity building 

For Policymakers: 

1. Develop open data policies to support model development and validation 

2. Create regulatory frameworks that facilitate rapid integration of prediction systems with infrastructure 

control 

3. Establish cross-jurisdictional coordination mechanisms for watershed-scale approaches 

4. Prioritize investment in high-resolution terrain data and sensor networks 

5. Support knowledge transfer initiatives between high-resource and low-resource regions 

7. Conclusion 

This systematic review has analyzed the current state-of-the-art in data science models for early prediction 

of urban flooding and their integration with preventive measure software systems. The field has 

experienced significant advancement over the past decade, with a clear trend toward hybrid modeling 

approaches, integration of diverse data sources, and architectures that enable increasingly rapid response 

times [92]. 

Despite these advances, important challenges remain, particularly in data availability, computational 

efficiency, uncertainty quantification, and adaptation to diverse urban contexts. Addressing these 

challenges will require interdisciplinary collaboration between data scientists, hydrologists, urban 

planners, emergency managers, and affected communities. 
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The most promising direction for future development appears to be in systems that: (1) seamlessly 

integrate physical understanding with machine learning capabilities; (2) effectively communicate and 

account for prediction uncertainty; (3) operate across multiple spatial and temporal scales; and (4) directly 

connect predictions to automated and manual preventive measures [97]. 

As urban populations continue to grow and climate change increases flooding risks, the development and 

implementation of effective prediction and prevention systems will become increasingly critical for urban 

resilience [96]. This review provides a foundation for researchers and practitioners working toward this 

important goal.  
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