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Abstract

Urban flooding has become increasingly prevalent due to climate change,
rapid urbanization, and aging infrastructure. This systematic review examines
the current state-of-the-art in data science models for early prediction of
urban flooding and the associated preventive measure software systems.
Through a comprehensive analysis of 97 research papers published between
2015 and 2024, we categorize and evaluate various modeling approaches,
data sources, prediction accuracy, and implementation challenges. Our
findings reveal a significant shift toward hybrid modeling approaches that
combine physical and data-driven methods, an increased integration of loT
sensor networks, and a growing adoption of machine learning and deep
learning techniques. We also identify gaps in current research, including
limited real-time data processing capabilities, challenges in model scalability,
and the need for improved uncertainty quantification [1]. This review
provides a foundation for researchers and practitioners working on flood
prediction systems and highlights promising directions for future research.
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INTRODUCTION

Urban flooding represents one of the most destructive and costly natural disasters affecting cities
worldwide. According to the World Bank, flood damages cost the global economy approximately $96
billion annually [2], with urban areas bearing a disproportionate share of this burden. The increasing
frequency and severity of extreme weather events, combined with rapid urbanization and aging
infrastructure, have heightened the urgency for effective early prediction systems and preventive measures

13].

Traditional approaches to flood prediction relied heavily on physical hydrological models that simulate
water flow based on rainfall, topography, and hydraulic infrastructure. While these models provide
valuable insights, they often suffer from computational intensity, data requirements, and limited ability to
adapt to changing conditions [4]. The emergence of data science techniques presents new opportunities to
enhance flood prediction through machine learning, artificial intelligence, and big data analytics [5].

This systematic review aims to:

1. Provide a comprehensive overview of the current state-of-the-art in data science models for urban
flood prediction

2. Evaluate the effectiveness of various modeling approaches and their integration with preventive
measure software systems

3. Identify trends, challenges, and opportunities in the field
4. Offer recommendations for future research and practical implementation

By synthesizing findings from 97 peer-reviewed studies published between 2015 and 2024, this review
serves as a resource for researchers, urban planners, emergency management agencies, and technology
developers working on flood prediction and mitigation systems.

2. Literature Review

The World Bank estimates that urban flooding causes $96 billion in annual losses [6], making it a
significant global concern. The need for efficient early prediction systems has increased due to the
combination of aging infrastructure, rising urbanization, and climate change [7]. Although they offer
important insights into the dynamics of water flow, traditional physical hydrological models have some
drawbacks, such as high computational costs, a large amount of data needed, and little flexibility in
response to shifting urban settings.

A revolutionary change in the area is represented by the use of data science methods into flood prediction.
New prospects to improve forecast accuracy, lower computational costs, and enable real-time response
capabilities are presented by machine learning, artificial intelligence, and big data analytics [8]. The results
of 97 peer-reviewed research that looked at the development of data-driven methods for predicting urban
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floods and how they integrate with software systems for preventive measures are summarized in this
review of the literature. The studies were published between 2015 and 2024.

2.1 Evolution of Modeling Approaches

Four different modeling technique categories that have surfaced in urban flood prediction research are
shown by the systematic study. Physical models, which make up 17.5% of the studied literature, still rely
on the governing equations of fluid flow and hydrodynamic principles. Although these models mimic
floodwater dynamics with excellent physical precision using precise topography, infrastructural, and
meteorological data, they are computationally limited for real-time applications [9].

32.0% of the literature is made up of data-driven models, which is a substantial shift from conventional
methods [10]. Without specifically depending on physical principles, these models build correlations
between input factors and flood outcomes by using statistical and machine learning approaches to find
trends in past data. Despite being computationally effective, many methods have trouble generalizing
beyond training scenarios and interpreting the underlying physical mechanisms [11].

The rise of hybrid models, which account for 42.3% of the examined research, is the most notable trend.
These methods integrate aspects of data-driven and physical paradigms, utilizing machine learning's
capacity for pattern detection and the theoretical underpinnings of hydrodynamic principles [12]. By
preserving physical realism while adjusting to local conditions and data patterns, hybrid models exhibit
improved performance [13].

8.2% of research uses ensemble models, which combine several independent models to better measure
uncertainty and generate more reliable predictions. By integrating the advantages of each model and
making up for its shortcomings, these strategies overcome the inherent drawbacks of each one [14].

2.2 Current Limitations and Research Gaps

The operational deployment and efficacy of data-driven flood prediction systems are restricted by a
number of enduring issues, notwithstanding notable advancements. One major issue is the lack of high-
resolution terrain models, extensive sensor networks required for model development and validation, or
adequate historical flood data in many cities.

Real-time simulation of intricate urban environments is still difficult due to computational limitations,
especially in places with limited resources [15]. Even while cloud computing provides scalable solutions,
access in developing areas—where flood vulnerability is frequently highest—may be restricted by the
costs and connectivity needs involved.

With the majority of systems failing to appropriately characterize prediction uncertainty, uncertainty
quantification becomes a critical gap. This restriction could undermine the validity of flood management
decisions by causing erroneous action thresholds or mistaken faith in forecasts.

Effective integration of prediction systems with current urban management frameworks is frequently
hampered by integration barriers, which include institutional, technical, and legislative limitations [16].
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These obstacles are a reflection of the intricate legacy systems and governance frameworks that define
many urban settings.

Since many models find it difficult to account for non-stationarity in climate patterns, climate change
adaptation is an emerging difficulty. As precipitation patterns and the frequency of extreme events change
beyond past experience, this constraint might make future reliability less certain.

Another notable gap is the scant attention paid to social aspects, such as social vulnerability, risk
perception, and human behavior [17]. The majority of systems prioritize physical and hydrological
processes over social factors, which have a big impact on flood impacts and response efficiency.

3. Methodology

We conducted a systematic search of the literature using the following electronic databases: IEEE Xplore,
ACM Digital Library, Science Direct, Web of Science, Scopus, and Google Scholar. The search was
performed in January 2025 and included papers published between January 2015 and October 2024.

The search strategy employed the following keywords and their combinations:

e Urban flooding OR urban flood

e Prediction OR forecasting OR early warning

e Machine learning OR deep learning OR artificial intelligence OR data science
e Software system OR decision support system OR early warning system

e 10T OR Internet of Things OR sensor network

¢ Real-time monitoring OR real-time prediction

Inclusion criteria:

e Peer-reviewed articles published in English

e Studies focusing on urban flood prediction using data science approaches
e Research describing software systems for flood prevention or mitigation
e Studies presenting empirical results or case studies

e Review articles with a comprehensive analysis of prediction models

Exclusion criteria:

e Studies focusing exclusively on rural or coastal flooding

e Articles without clear methodology or evaluation metrics

e Research focusing solely on post-flood damage assessment
e Publications not available in full text

e Conference abstracts without detailed methodology
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The initial search yielded 743 articles. After removing duplicates, 612 articles remained for title and abstract
screening. Based on the inclusion and exclusion criteria, 183 articles were selected for full-text review, resulting in
a final selection of 97 articles for the systematic review[18-24].

From each selected study, we extracted the following information:

e Study characteristics (authors, year, geographic location, journal)
e Modeling approach and algorithms

e Input data sources and resolution

e Software architecture and implementation details

e Performance metrics and evaluation methodology

e Limitations and challenges

e Integration with preventive measure systems

Each included study was evaluated using a quality assessment tool developed based on the Critical
Appraisal Skills Programme (CASP) and modified for the specific context of flood prediction models.
The assessment considered methodological rigor, data quality, model validation, and applicability to real-
world scenarios.

4. Results and Discussion
4.1 Overview of Modeling Approaches

The reviewed literature reveals diverse approaches to urban flood prediction, which we have categorized
into four main groups (Figure 1):

Figura 1: Distribution of Modeling Approaches for Urban Flood Prediction
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1. Physical Models (17.5%): Based on hydrodynamic principles and governing equations of fluid flow,
these models simulate floodwater dynamics using detailed topographic, infrastructure, and
meteorological data [24].

2. Data-Driven Models (32.0%): Rely primarily on historical data patterns rather than physical
principles, employing statistical and machine learning techniques to identify relationships between
input variables and flood outcomes [25].
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3. Hybrid Models (42.3%): Combine elements of physical and data-driven approaches, leveraging the
strengths of both paradigms to improve prediction accuracy and computational efficiency [26].

4. Ensemble Models (8.2%): Integrate multiple independent models, often of different types, to produce
more robust predictions and better quantify uncertainty.

The distribution of modeling approaches over time shows a clear trend toward hybrid and ensemble
methods, with pure physical models declining in relative proportion since 2018 (Figure 2).

Figura 2: Trend of Modsling Approaches Over Time [2015-2024)
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4.2 Input Data Sources and Integration

The effectiveness of flood prediction models depends heavily on the quality, variety, and resolution of
input data [29]. Table 1 summarizes the main data sources utilized in the reviewed studies.

Table 1: Input Data Sources for Urban Flood Prediction Models

Data Source Usage (%) Temporal Spatial Key Applications
Resolution Resolution
Weather radar[30] 87.6% 5-15 min 100m-2km  Precipitation intensity and
distribution
Rain gauges [31] 79.4% 1-60 min Point data Rainfall  validation and
calibration
Digital elevation models 92.8% Static 0.5-30m Surface water flow
[32] simulation
Land cover/use [33] 74.2% Monthly- 10-100m Permeability and runoff
yearly coefficients
Soil moisture sensors 43.3% 5-60 min Point data Infiltration capacity
[34] estimation
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Drainage network data 81.4% Static Vector data  Underground flow

[35] modeling

loT water level sensors 61.9% 1-15 min Point data Real-time validation and

[36] calibration

Social media data [37] 31.9% Variable Variable Event detection and impact
assessment

Mobile phone data [38] 24.7% 5-60 min Variable Population distribution and
movement

Satellite imagery 56.7% 1-16 days 0.3-30m Historical flooding extents

LIDAR 49.5% Static 0.1-2m High-resolution topography

CCTV imagery 22.7% 1 sec-5 min Point data Street-level flooding
detection

The integration of multiple data sources was identified as a key factor in improving model performance.
Studies employing five or more distinct data sources demonstrated a 17.3% average improvement in
prediction accuracy compared to those using fewer data sources [40]. The most successful
implementations utilized automated data fusion techniques to handle different spatial and temporal
resolutions.

The growing adoption of 10T sensors represents a significant advancement, with 61.9% of studies from
2020-2024 incorporating 10T data compared to only 23.7% in 2015-2019. These sensors enable real-time
monitoring of water levels, rainfall, and drainage system performance, improving both the timeliness and
accuracy of predictions.

4.3 Machine Learning and Deep Learning Algorithms

The use of machine learning (ML) and deep learning (DL) algorithms for flood prediction has grown
substantially over the review period. Figure 3 illustrates the frequency of different algorithms in the
reviewed literature [41].

Flgura 3: Frequency of MLIDL Algorithma In Urban Fieod Prediction
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Among the most widely used ML algorithms were:

1. Random Forest (RF): Used in 43.3% of ML-based studies, RF demonstrated strong performance in
handling non-linear relationships and feature importance analysis [42].

2. Support Vector Machines (SVM): Implemented in 38.1% of ML studies, SVM showed robustness
in handling high-dimensional feature spaces and noisy data [43].

3. Gradient Boosting Machines (GBM): Featured in 31.9% of ML studies, with XGBoost being the
most popular implementation due to its speed and performance [44].

In the deep learning domain, the following architectures were most prominent:

1. Convolutional Neural Networks (CNN): Utilized in 49.5% of DL studies, primarily for processing
spatial data like radar and satellite imagery [45].

2. Long Short-Term Memory networks (LSTM): Present in 57.7% of DL studies, LSTMs excelled at
capturing temporal dependencies in time-series data [46].

3. CNN-LSTM hybrid architectures: Featured in 36.1% of DL studies, these models effectively
combined spatial and temporal analysis for improved predictions [47].

4. Graph Neural Networks (GNN): A newer trend, appearing in 18.6% of DL studies since 2021, these
models excel at representing complex urban drainage networks [48].

Performance comparisons across studies revealed that:

DL approaches generally outperformed traditional ML in scenarios with abundant data and complex
spatial-temporal dependencies [49].

ML models often showed better efficiency and interpretability for smaller cities with limited data

Hybrid models combining physical principles with DL achieved the highest accuracy in 73.2% of
comparative studies [50].

4.4 Software Architectures and Implementation

The reviewed studies revealed diverse architectures for implementing flood prediction and preventive
measure systems [51]. We identified four predominant architectural patterns:

1. Cloud-centric architectures (39.2%): Centralized data processing and model execution on cloud
platforms, offering scalability and computational power.

2. Edge-fog-cloud architectures (27.8%): Distributed processing across edge devices, local fog nodes,
and cloud infrastructure, enabling faster response times and reduced bandwidth requirements.
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3. Integrated control systems (21.6%): Tightly coupled with urban infrastructure control systems for
direct actuation of preventive measures.

4. Standalone decision support systems (11.3%): Focused primarily on visualization and decision
support without direct integration with infrastructure controls.

Table 2: Software Architecture Comparison for Flood Preventive Measure Systems

Architecture Real-time  Scalability Integration Deployment Typical Primary Use

Type Capability Complexity Cost Latency Cases

Cloud- Medium High Medium Medium 5-15 min Large-scale

centric [52] forecasting,
regional

coordination

Edge-fog- High Medium High High 1-5min  Local early
cloud [53] warning, critical
infrastructure
protection
Integrated High Low Very High High <lmin  Automated
control [54] drainage
control, smart
infrastructure
management
Standalone Low Medium Low Low 10-30 Planning, policy
DSS [55] min development,
evacuation
management

Table 2 summarizes the key characteristics of these architectural approaches. The review identified a clear
trend toward edge-fog-cloud architectures in more recent implementations (2020-2024), with 43.7% of
systems in this period adopting this approach compared to only 12.3% in 2015-2019. This shift reflects
growing recognition of the importance of rapid response times in flood events and the increasing
availability of computational resources at the edge [57].

4.5 Performance Metrics and Evaluation

The reviewed studies employed various metrics to evaluate model performance. Table 3 summarizes the
most common metrics and their frequency of use.
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Table 3: Performance Metrics for Flood Prediction Models

Metric Usage (%) Description Typical Range in
Studies

Nash-Sutcliffe 68.0% Measure of predictive power relative to 0.65-0.92

Efficiency (NSE) mean observation

Root Mean Square 79.4% Absolute error measure in prediction Varies by variable

Error (RMSE) units

Mean Absolute Error 61.9% Average absolute difference between Varies by variable

(MAE) predictions and observations

Precision 53.6% Ratio of true positives to all positive 0.72-0.93
predictions

Recall 51.5% Ratio of true positives to all actual 0.68-0.91
positives

F1 Score 49.5% Harmonic mean of precision and recall ~ 0.70-0.92

AreaUnder ROC Curve 42.3% Model's ability to discriminate between 0.75-0.96

(AUC) classes

Lead Time 57.7% Time between prediction and actual 0.5-24 hours

flood occurrence

False Alarm Rate 53.6% Proportion of false positives 0.05-0.28
Computational 36.1% Processing time for predictions Seconds to hours
Efficiency

The review revealed significant inconsistency in performance reporting, with 27.8% of studies using
unique metrics or variations that complicated direct comparison. Additionally, only 63.9% of studies
performed validation on independent test sets not used during model development, raising concerns about
generalizability [60].

The highest-performing models across comparable metrics were hybrid approaches combining physical
knowledge with deep learning, achieving median NSE values of 0.86 compared to 0.78 for pure data-
driven models and 0.74 for physical models.
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4.6 Preventive Measure Systems and Decision Support

Effective flood prediction is only valuable when coupled with actionable preventive measures. The
reviewed literature revealed several categories of preventive measure systems:

1. Early warning dissemination systems (93.8%): Alert distribution via mobile apps, SMS, sirens, and
social media [61].

2. Smart drainage control systems (47.4%): Automated or semi-automated adjustment of drainage
infrastructure based on predictions [62].

3. Evacuation routing systems (39.2%): Dynamic route calculation for safe evacuation considering
predicted flood progression [63].

4. Resource allocation systems (31.9%): Optimization of emergency response resources before and
during flood events [64].

5. Green infrastructure management (24.7%): Dynamic control of green infrastructure elements like
retention ponds and permeable surfaces [65].

The most advanced systems integrated multiple preventive measures with prediction models, creating
comprehensive flood management platforms [66]. These integrated systems demonstrated 23.7%
improved response times and 31.5% reduced flood damage in case studies compared to standalone
warning systems.

5. Research Trends and Future Directions
5.1 Temporal Analysis of Research Focus

Figure 4 illustrates the evolution of research topics over the review period (2015-2024). Several clear
trends emerge:

Figure 4: Evolution of Research Topics in Urban Flood Prediction (2015-2024)
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1. Increasing interest in deep learning approaches, particularly since 2019

2. Growing focus on real-time prediction capabilities

3. Shift toward multi-hazard modeling that considers floods in conjunction with other urban risks
4. Greater emphasis on uncertainty quantification and communication

5. Expanded integration of social media and crowdsourced data

5.2 Geographic Distribution of Research

The geographic distribution of case studies reveals uneven development of flood prediction systems
globally (Figure 5). While North America, Europe, and East Asia show high implementation rates,
significant gaps exist in Africa, South America, and parts of Southeast Asia—regions often facing high
flood vulnerability [68].

Figure 5: Geographic Distribution of Urban Flood Prediction Case Studies (2015-2024)
Implementation Rate
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Case Studies by Income Level
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The review identified 43.3% of studies from high-income countries, 37.1% from middle-income countries,
and only 19.6% from low-income countries, highlighting potential issues of technology transfer and
adaptation to diverse contexts.

Research Gaps Identified:
- Significant implementation gaps in Africa

« Limited studies in South America

Al ion of low-income region:

5.3 Challenges and Limitations
Despite significant progress, several challenges persist in urban flood prediction and preventive systems:

1. Data limitations: Many cities lack sufficient historical flood data, high-resolution terrain models, or
comprehensive sensor networks [82].

2. Computational constraints: Real-time simulation of complex urban environments remains
computationally intensive, limiting application in resource-constrained settings.
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3. Uncertainty quantification: Most systems inadequately characterize prediction uncertainty,
potentially leading to misplaced confidence or action thresholds [83].

4. Integration barriers: Institutional, technical, and policy barriers often prevent effective integration
of prediction systems with existing urban management frameworks.

5. Climate change adaptation: Many models struggle to account for non-stationarity in climate
patterns, potentially reducing future reliability [84].

6. Social factors: Limited consideration of human behavior, risk perception, and social vulnerability in
model development and system design.

5.4 Emerging Technologies and Future Directions
Several promising technologies and approaches are emerging that could address current limitations:

1. Physics-informed neural networks: Combining deep learning with physical constraints to improve
generalization while maintaining physical realism [70].

2. Reinforcement learning: Optimizing preventive measure actions through reinforcement learning
approaches that consider long-term outcomes [71]

3. Digital twins: Comprehensive virtual representations of urban water systems that enable scenario
testing and optimization [72].

4. Explainable Al: Making prediction models more transparent and interpretable for decision-makers
and stakeholders [73].

5. Transfer learning: Adapting models trained in data-rich environments to data-scarce contexts.

6. Federated learning: Developing flood prediction models across multiple cities without sharing
sensitive data.

7. Quantum computing: Potentially overcoming computational limitations for high-resolution
simulations.

6. Practical Implications and Recommendations

Based on our systematic review, we offer the following recommendations for researchers, practitioners,
and policymakers:

For Researchers:

1. Prioritize standardized evaluation methodologies and metrics to facilitate better comparison across
studies
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N

Develop approaches specifically addressing data scarcity in vulnerable regions

w

Integrate physical knowledge with data-driven methods to improve generalizability
4. Focus on uncertainty quantification and communication

5. Consider socio-economic factors in model development and evaluation

For Practitioners:

1. Implement hybrid architectures combining edge and cloud computing for optimal performance
2. Prioritize user-centered design of warning systems and decision support tools

3. Develop staged implementation approaches for resource-constrained environments
4. Build systems with climate change adaptability as a core principle

5. Invest in both technical infrastructure and stakeholder capacity building

For Policymakers:

1. Develop open data policies to support model development and validation

2. Create regulatory frameworks that facilitate rapid integration of prediction systems with infrastructure
control

3. Establish cross-jurisdictional coordination mechanisms for watershed-scale approaches
4. Prioritize investment in high-resolution terrain data and sensor networks

5. Support knowledge transfer initiatives between high-resource and low-resource regions
7. Conclusion

This systematic review has analyzed the current state-of-the-art in data science models for early prediction
of urban flooding and their integration with preventive measure software systems. The field has
experienced significant advancement over the past decade, with a clear trend toward hybrid modeling
approaches, integration of diverse data sources, and architectures that enable increasingly rapid response
times [92].

Despite these advances, important challenges remain, particularly in data availability, computational
efficiency, uncertainty quantification, and adaptation to diverse urban contexts. Addressing these
challenges will require interdisciplinary collaboration between data scientists, hydrologists, urban
planners, emergency managers, and affected communities.

pg. 138



KJMR VOL.02 NO. 09 (2025) SMART FLOOD PREVENTION ...

The most promising direction for future development appears to be in systems that: (1) seamlessly
integrate physical understanding with machine learning capabilities; (2) effectively communicate and
account for prediction uncertainty; (3) operate across multiple spatial and temporal scales; and (4) directly
connect predictions to automated and manual preventive measures [97].

As urban populations continue to grow and climate change increases flooding risks, the development and
implementation of effective prediction and prevention systems will become increasingly critical for urban
resilience [96]. This review provides a foundation for researchers and practitioners working toward this
important goal.
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