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Introduction

Fractional-order differential equations have emerged as a significant area of study because of their wide-
ranging applications in modeling complex systems. They are widely employed in disciplines such as
traffic flow analysis, earthquake prediction, physical process simulation, signal processing, financial
modeling, control systems, fractional dynamics, and various forms of mathematical modeling[1-6]. Unlike
classical integer-order models, fractional-order formulations are capable of incorporating memory and
hereditary effects, making them highly effective for describing real-world phenomena with long-term
dependencies.

Over the past few decades, research on fractional-order differential equations has expanded rapidly,
leading to the development of a variety of analytical and numerical techniques to address such problems|[7-
19]. This progress has been driven by the necessity to obtain accurate and efficient solutions for models
that cannot be solved using conventional approaches. The diversity of problems in science and engineering
has encouraged the creation of specialized methods, each offering distinct advantages depending on the
nature of the application.

Several definitions of fractional derivatives have been introduced, each suited to different theoretical
frameworks and physical interpretations. Comprehensive discussions and comparative analyses of these
definitions can be found in the literature[20-26].

In this study, we focus on the time-fractional nonlinear Klein—Gordon equation (KGE), which plays an
important role in describing nonlinear wave propagation and dynamic behaviors in various physical
systemsplays a pivotal role in modeling relativistic wave phenomena and scalar field dynamics,
particularly within the framework of quantum mechanics and other areas of theoretical physics. In recent
years, its generalized form where the classical time derivative is replaced by a fractional-order derivative
has garnered considerable interest. This time-fractional Klein-Gordon equation (TFKGE) offers a more
versatile and accurate framework for representing complex physical processes that exhibit memory-
dependent and hereditary behavior, such as those encountered in viscoelastic materials, anomalous
diffusion, and systems characterized by nonlocal interactions.

Analytical solutions of the TFKGE are often challenging to obtain due to the inherent no locality of
fractional derivatives. As a result, numerical methods have become increasingly essential for
approximating solutions to such equations. Among various numerical strategies, spline-based techniques
particularly those using cubic splineshave demonstrated significant promise. These methods benefit from
the smoothness and continuity of cubic spline basis functions, which provide stable and accurate
approximations, especially for differential equations involving higher-order spatial terms.

In this study, we explore a numerical approach for solving the time-fractional Klein—Gordon equation by
employing a collocation method based on cubic spline functions. The fractional derivative is interpreted
in the Caputo sense, which is well-suited for physical applications due to its compatibility with standard
initial conditions. The time discretization is achieved using finite difference schemes, while the spatial
discretization is handled using cubic spline basis functions.

The application of fractional differential equations spans a wide range of scientific disciplines, including
transport processes, geophysics, signal processing and financial modeling, engineering systems, and
applied mathematics. Their relevance stems from their ability to accurately capture complex behaviors
not easily described by classical models. This growing interest has led to an expanding body of research
focused on both analytical and numerical treatment of such equations. Numerous techniques have been
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proposed to handle the intricacies of fractional calculus, each grounded in different definitions of
fractional derivatives, such as the Caputo, Riemann—Liouville, and Griinwald—Letnikov forms.

In this work, we focus on the time-fractional nonlinear Klein—Gordon equation expressed in the general

form:
Zu(.0)+p S u(y.0)+ pu(n)+ pu’ (10 = f(r,t) 0<y<M, t,<t<T (1)
u(y,t) =4 (), u,(y,1))=¢,(») 2
u(0,0) =¢,(1), u(M,t)=¢,(t) (3)

. . T ok .
WhereCaputo fractional time derivative is represented bymand u= u(y, t)represents the displacement of

the wave at (y,t). € (1,2]show the fractional order of the time derivative while f(y, t)represents to
source term. Here p, p; and p, are real numbers, and sigma is equal to 0 = 2 or 3.

The time-fractional Klein—Gordon equation (TFKGE) has been utilized in various fields such as
condensed matter physics, quantum field theory, and nonlinear dynamics. Multiple analytical and semi-
analytical techniques have been proposed for solving such equations, including the Adomian
decomposition method, variational iteration methods, homotopy analysis methods[27-30] and spectral
approaches. For instance, Jafari et al. demonstrated the use of fractional B-Spline functions for
constructing semi-analytical solutions[31]. Vong and Wang[32, 33] developed compact finite difference
schemes for both one and two-dimensional TFKGE problems, confirming their stability and convergence
through energy-based analyses[34]. In another direction, Dehghan introduced a meshless method using
extended basis functions in fully implicit schemes to solve fractional Klein—Gordon and sine-Gordon
equations[35].

Further developments include the application of iterative correction procedures and the Adomian
decomposition technique by Jafari to obtain approximate solutions to time-fractional KGEs[36].Chanet
al. addressed nonlinear fractional differential equations using spectral methods[37], while Lyu and Vong
proposed a linearized second-order approach specifically designed for fractional nonlinear Klein—Gordon
equations[38]. Nagy [39]introduced a sinc-Chebyshev collocation method, which merges sinc functions
with second order shifted Chebyshev polynomials to effectively tackle nonlinear TFKGEs. Sahu and Jena
employed a hybrid scheme combining a Newton—Raphson method with a modified Laplace-Adomian
decomposition technique for solution approximation[40].Yaseen et al. proposed a trigonometric B-spline
collocation scheme to enhance the accuracy of nonlinear TFKGE solutions[41, 42]. More recently, Vivas-
Cortez etal. improved cubic spline-based methods by integrating an extended spline formulation with the
Crank—Nicolson scheme, establishing numerical stability and convergence[43].

In this work, we introduce a numerical method to solve the time-fractional Klein—Gordon equation using
newly developed restructured Hybrid Cubic B-Spline (HCBS) basis functions. These functions represent
a simplified version of traditional cubic B-splines, with an additional adjustable parameter that enhances
adaptability to the solution's shape. The Caputo fractional derivative is discretized using a central
difference scheme, while spatial interpolation is achieved through HCBS basis functions.

The paper is structured as follows: Section II presents the mathematical formulation of the Caputo
fractional derivative and the time discretization using finite differences. The subsequent sections provide
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implementation details of the HCBS method, its stability analysis, numerical results, and a comparison
with existing techniques.

1. Time Discretization

T
Let consider the time domain [0, T] which is equally divide into Q subintervals of length Af = — Here,

endpoint is 0=¢, <t <.., 7, =T and ¢, =gArand ¢=0:1:Q. Firstly, Caputo fractional derivative is
discretized at ¢ =¢_, [44].

aﬁu(ya tq+1) _ 1 tj'( 62“(% p) ) p+1
or” re-py op’ Hant ™

r lp41 62

T Te- ﬂ)g I

dp , (1< p<2)

I/I(yap) (tq+1 p)—,b’+1dp

t
R R o e et e _pl “
= == |ty —p) " dp+J} 4
re-pA) ];) Au? .[ g+l At (4)

Iy
qg—k—+1

_ u(y,t; ) 2u(y,t; ) +u(y,t; 1) £+1 g—+1
= o5 Z - 2 j (e ”7de+J],

qk

q
_ 1 U(J’»tq_k_._] )—2u(y,tq_k )+u(y,tq_k_1 ) 2—p8  1.2—p g+1
= > el (k +1) k2P 4 T4,

q
_ 1 u(y,t —k+1) 2u(y, lg— )+ru(y, lg—t— 1) q+1
_—r(3_ﬁ);ak 5 + J1

Where q, =(k+1)>” —k*”,0=(t.,,—a)and JZ". The truncation error is bound i.e.

87 | < o(ary” (%)

Where ¢ Is constant the coefficients g, which are,
e The gt are non-negative for (K =0,1, 2..., R).

* 1=4>4>4,...4 and 4, >0as n—>0.

-1
o (a,-a)+), (~A., +24,-4,)+(24,-4g-1)-q, =1.

1

»Q

=~
Il

Putting equation (4) into (1)

q
T kz(; Aoty )= 2u(yst, ) +u(y,t, )+ pu, (v, 0+ pu(y,0)+ pu’(y,0) = f(¥,0)
g=0,1, 2 3,..,0-1 (6)
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1 .
Suppose & = eIV and u(y,z ) =u’"

Applying a © weighted equation (6) takes from

q

By =2u’ +u™)+ B p = 2u +ut )+ Yl + put) = £ = (=P (pu’, + put) = p, ()’
k=1

q=0,1,2,.,0-1 O

For @ =1 we get semi directional numerical system

q
(B, + Py )uqJrl + pu,q;;l =2Bpv’ + ﬂz Pr (uqikJrl —2u’™ + “qikil) - p, ) = lgpo"'w1 + fqﬂ

k=1
q=0,1,2,....,0-1 (8)
2. Extended cubic B-spline functions

Consider the spatial interval [¢, d]divided into N equal segments, each of length 4 =(d —c)/ N this result

in boundary points ¢ =c¢, <c,...<c, = d, where each point is defined as ¢, = ¢, +ch for n=0, 1,...,N for
a function U (y, ¢)that is sufficiently continuous, there is always a unique extension available[45]

n+l

u(y,t)= Z ¢, @0, (y,A) )
n=-1
4h(y-y,,) 1= +3(r-v,.)" 4, VeV, arVi)
(4= +12k° (y—y, ) +61* (y—y,) 2+ 2)
| -12h(y-y,.))’ =3(y-y,.)* 4, yeEly, v
LA =g | B A=) =120 (9= 3,.) = 68" (¥ =3,.,)' 2+ 2) (10)
+12h(y =, +3(y—y,.)" 2, VeV Von)
_4h(y - yn+2 )3 (1 - j“) - 3(y - yn+2)4ﬂ“9 ye [yn+1’ yn+2)
0, otherwise

Here 2 with—7 (n—2) < A <1is a real number responsible for fine tuning the curve and # gives the
degree of ECBS used to generate different forms of ECBS functions the approximate solution
UM =U"(y,,t")and its first two derivatives can be expressed with respect to the spatial variable y at

the q"time step as follow[46],
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*N\Ng _ q q q
(M )n - alGn—l +a2§n + alGnJrl

(u,), = a5, , — a6,

*\g q q q
(uyy)n =46, Tasg, ta,6,., (11)
_ 4-4 _ 16+24 =1 _ 244 _ —4-24
where, a =%, a,='%*, a,=3, a,= = and as ==3*.

3. Redefined extended cubic B-Spline function

The basic functions ¢_,,, ..., ¢,,,,1n a standard ECBS collocation method, do not satisfy the boundary

conditioned when Dirichlet type end conditioned are applied ,as they do not vanish at the spatial domain
boundaries to address this issue, we need to modify these basis functions to ensure that they do vanish at
the boundaries this is achieved by introducing a weight function ¢(y,s) which effectively removes

P1:1) = HE B0 + 707 4,(0) ¢, a g, from equation (9) as[47]:

N
u(y,0)=p(y,0)+ ¢, (O, (1, A) (12)
n=0
Where the weight function (y,)and the redefined ECBS (RECBS) functions are given by
P10 = 255 (O + 72075 4,0 (13)
tn(y 4
0D =00 D k=0,
{t, (1, 4)=1,(»,2) forn=2:1:N-2, (14)

{6 (1) =t,(y.2) %TNH(%&) for n=N-1,N.

4. Space Discretization

Putting equation (12) in equation (8) at z =¢_,, we get,

q
(@wy +w)u'™ +wul™ =20mU" +a ) w (U =20 + U™ =, (U7 ) —awU*™ + f* (15)

K=l

Discretizing at y =y, we get

q
(a+m)U +w(U, )" =200 +a Y w, (U =207 54U -y U) - aU! " + £,
K=1

(i=0,12.,N)  (16)

Using (12) the last expression takes the form
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(a+ Wl)[(ﬂf“ +2.60, (yi,ﬂ)}@[((pyy)?” +2,60M, (yi,i)}

n=0 n=0
9
=2au! + az w (™ = 2u ™ Y —w, W) — o + £, 120, 1, 2, N (17)
k=1
So, we obtain the following structure of & + 1equation in N + 1unknown.

q+1

b 0 Xo
q+1
b b b g X,
b b, b
= . (18)
b b, b
q+l1
b b, b | ¢y XN
* 1
b, Ig* Xy
Where
b — l2wir2) b — "2 (a+w A=) +12w(A+2)
1 n*(a-4y ° 1 24n?

R (a+w)(A+8)—12w(A+2)
1247

b,
q9
x, =2aul +a > w, U 22U + U —w, (U —aU ™+
k=1
For numerical procedure, apply the given initial conditioned to acquire the set of equations.

(U') =¢'(x,) forn=0,
(U) =p(x,) forn=1:1:M -1, (19)
(U'), =¢'(x,) forn=N.

The matrix representation of (19) is

*

a

q,

*
a,
a, a

a a, q
a a,
*

0
0
0
1

0
N-1
0
N

(@) = (g
(¢1)1 - ¢10
(¢1)N—1 - ¢1?/—1
(@) — ()5

(20)
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— h(4=1) °

Wherea' =84, 4, =1 We solve (20) to obtain [g 0 el ]S Then put the values of ¢, into
equation (12) to find out the value of Y ’.We can use equation (18) for ¢=0,1, 2,...... O—1,but the term

involving y~' appears in equation (18) for ¢ =0.To resolve this issue by using the velocity condition
given in (2).

Y=Y~ Ag, (p).

5. Stability Analysis

q ~4q
Fourier method is used to check the stability of the proposed numerical method. Let €= and €

Exact and approximate growth factors of the Fourier modes ? and «,“respectively. The correct error e
is given by

el=gl-¢g! n=1:1: M -1, q=0:1:0 21
Where e’ :[ef’ ,€9,.....ep | ]S

g+l
n—1

(aa, +wa, +wa,)e '+ (aa, +wa, +wb,)e’"

n+l

+(aa, +wa, +wa,)e

n

— q q q _ g-1
- 2a(alen—l + aZen + alenH) a(alen—l n 1 n—1

q
q-1 q-1 qg—k+1 q—k q—k—1
+ae +ael )— az wla (e[ —2el +e )
k=1

q—k+1
n

+a, (e =2e"™ +e' T +a (e

n n n—1

26t ety (22)

n+l

The error equations satisfied the end conditions

e=¢(,), n=IL:1:N, (23)
And
e =¢(1,).e; =4, (), g=0:1:0 (24)

We define the grid function as

el ifyn—%<ySyn+%,forn=1:1:N—1,

el = ‘ 2b+g 2a-—g (25)
0 ifb<sy< or <y<a
2 2
Now
el(y)= Zeq(m)gﬁ,qzlzl:Q (26)
q=—0
Where,
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g, (m)=ﬁj‘eq(y)g%dx (27)
Taking the || |, norm, we get

b+%

o, = S e = [ fr] a8 T e s fler] aor

-l
b

a 0 2
From Perceval equality we have J' ‘eq (m)* ‘dx =>"|¢,(n)| so the above expression can be written as
b —00

e} = 3 fe, ) (28)

Now, the solution of Fourier series,

e = g ek (29)

Where V=1 Andu = 2z ysing equation (29) in equation (22) and then dividing by e"**

—iug
(aa, +wa, +wa,)e, e +(aa, + wa, + wa)é,.,

iug
+(aa, +wa, +wa,)g,. e
_ —iug —iug —iuh iug —iug iug iug
=2a(ace™ +a6, tage ™) —a(ae, e +ae,  +ae, €°)ta e, e —2¢ " e, )
q

_az wila (6, e =26, 6, ") Tay(8, =26, e, )T a(e, e =26, " +e, €)  (30)
=

After collecting like terms, we know thate™ +e ™™ =2cos(ug) . So, we get.

q
1
8q+1 =z[2€q_gq_l_zpk(gq_k+l)(al+az) gq—k+ gq_k_l] (3 1)
k=1
Where,
12P(2+u)sin? (Y8
ﬂ=l+%+ ) (A) A >1 for u=>-2

ag? (—6+(4-u)sin? ("84}

6. Convergence of the Scheme

We examine the merging of CIMSS by doing the following. The strategy Khalid et al. [48]depict in their
ponder. At this point, wear starting using the taking after valuable hypotheses[49, 50].
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Theorem 1. Suppose,r ={a=x,,x,,......,x,, =b} Which refer to a partition and we have [qa,b]for
m=0,1,2,....,M and v e C withx,, = mh. Suppose,v e C* [a,b] and f e C?[a,b]. Suppose,V (x,r) is

the spline that presents the preparation bend of this issue. At that point there exist constants which are not
dependent on h. so,

| (r.-UG.0)|, < Eg* V20, i=0,1,2 (32)
N
Lemma: The extended B-spline gratify the difference Z t,(y,m)|<1.75 for 0< y <1 (33)
n=0
Proof: By the triangle inequality we have
N N
PRACH)) ESIY RN
n=0 n=0
For any knot y, ,we have
N
2L 0] = a0+, G| (0| = 1<
n=0
We obtain

t(V,,m) =5@+m),t, (v, =158+n)
toay,.m=5@-m.t, ,(y,_.n)=2%54-n)

Then for yely, .y,

,t,(v,m),t, ,(y,7n7) area bounded above by 5 (8 +177)

Similarly, ?,,,(y,7),t,_,(¥,17) t,,,(¥,n),t,_,(y,17) are bounded above by 5;(4—177)

for any point -~ <y<y, ¥, Sy<y,weobtan

N

2

n=0

(D] =t G|+ [, (a1) [t ||+ [, (21| = 5 (7 + 20)

Since 7 €[-8,1] we have 1<2+7<1.751<2+7<1.75hence

|7, (.| <1.75

Theorem 2:The extended cubic B-splineestimateu(y,t) the analytical exact solution u(y,t)and if
Eec’[0,1]then |ju(y,0)—u(y,0)|, <E"g*vi>0

E’ [u(y,t)—u(y,0)| <E°g’Vi=0 (34)

Where g is reasonably small and E" >0 is a constant not depending on g
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N
Proof: Suppose,u( V,t ) = Zdn(t)/ln (»)is a spline which is calculated for the estimated solution of

n=0
U (y,t)and the exact solution u(y,s).Suppose, iflu(y,,r) =" (y,,t) for n=0:1: N be the collocation
c conditions then /u”(y,t)=y"(y,,t),n=0:1: N. Now, the problem can be explained in the form of a
difference equation L(U(y,,t)-U(y,,t)) as,

g+l q+1

(aa, +wa, + wa4)g "+ (aa, +wa, +way)s!" +(aa, + wa, +wa,)s? (35)

q—k+1 __

=2a(ag, + a6, +a,6,,)— a(alg +a,6, +a1§n+1) azpk[al(gn 1 +§q B

+ay(ei =26 + g el ~ 260 + e+ L e

n+l St
The boundary conditions can be written as a,¢?" +a,¢?" +a,¢’!l =0,n=0, N,

Where 5o =61 —di,n=0:1: N A =g’[x' —x""],n=0:1:N ¢/ =g/ ~d’,n=0:1: N
And 2/ = g’[x? —x"],n=0:1: N .
We have

q

2 0
x?—x"1

n n

<Eg*

2.9 Oq
|xn x n

q
n

We  describe A’ =max{|4/|:0<m< M}, =

e :max{|ej|:0SmSM}for g =0 equation

converts into the succeeding relation.

(aa, +wa, +wa,)s. | +(aa, +wa, +wa,)s) +(aa, +wa, +wa,)s, .,
:(a W ) (algr(z)—l + ath? + a1§3+1)+ ?’11

We get by using initial conditione’ =0,

(aa, + wa, + way )grll =(aq, + Wa4>(§;i+1 - grlt—l) Twa (grll+1 - grlz—l) + g%ﬂl
By putting absolute values of 4/,¢,and small g. then we get,

0 < 6Eg*
n T g (n2)+H12(=2-n)+ pig’ (247)

By using boundary conditions, we accomplish that

01 2
e <Ekg
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Where E is independent of the spatial method, we suppose that &* <E g? true for k=1:1:q. let
E=max{E, :0< K <gq} then
(aa, + pa, +wa,)s, , +(@a, + wa, + wa,)g, +(aa, + wa, +wa,)s,,,

g+1 g+1

+Haa, +wa, +wa,)s”| +(aa, + wa, +wa,)s!" +(aa, +wa, +

-1 -1 -1 1 1 1
W, =2w, +wy)agT +ag!™ +agi ) +...+ (wq_ a 2wq_3 W, Nag, +a,6,+as,,,)
0 0 0 1
W, (a6, + a6, +a6,,)]+ ? A
. . n? §0
again, taking absolute values of "/»>>n+1 we have

0l < 6Eg*
nT agt(n+2)+12(=2-n)+pig’ (2+1)

q-1
[2a(as,  + a6, +ag,) - az (W —2w, — Wk*l)EgZ +Eg’]

k=0
By using the boundary conditions, we gete’?"' < Eg” """ < Eg”
Hence, for all values of n,

&' < Eg’ (36)

Now, u” (v,0) ~u(y,0) = > (d,(t)=5,(1)1,(»)
n=0 S

Taking the infinity norm and applying lemma we obtain

”uD (, t)—u(y,t)”w <1.75Eg’ (37)
Making use of the triangle inequality, we get

[u(y.)—u(y,0)|, < |u(y.0)—u(y,0)|, t{u(r.0)—u(y.0)|, (38)
Using the inequalities 32) and (37) in (38) we obtain

|y, 0)—u(y,0)|, <E,g*+1.75Eg> =E"g>

Where, E" = E g’ +1.75E

A(AL)*

We accomplish that the numerical approach converges unconditionally, therefore

e, 0) —u(y,0)|, < Eg* + A(At)*”
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Where E” is a constant and 3 € (1, 2] hence, hypothetically the projected system is o(g> + A *) accurate.

7. NumericalResults and Discussion.

To evaluate the accurateness and performance of the projected numerical scheme, several benchmark test
problems are considered. The errors are measured using both the maximum norm (I-l-o0) and the L2 norm,
defined respectively as follows[51]:

Ly, = max |U(yn' t) - u(yn' t)l'
0<ns<N

N
L= |g ) UGt —u0w 12
n=0

WhereU (y,, t) represents the exact solution and u(y,,t) denotes the numerical approximation at the
spatial node y, and timet.

Furthermore, the experimental order of convergence (EOC) is calculated to assess how the error decreases
as the grid is refined. The EOC is determined using the following relation [52]:

Lo (2n)
Lo (1) )'

Which provides an estimate of the convergence rate based on the computed maximum norm errors at
successive mesh refinements.

1
EOC =
oC l0g2 log (

Problem 1

Suppose that thenonlinear time fractional KGE[39].

2

%—g—yg+u2(y,t):f(y,t) 0<t<1,0<y<l (39)

The piecewise defined estimated solution attained by using the projectedtechniquefor f = 1.25, over the
domain 0 < x < 1withM =100, n = 100, and time step At = 0.01, is illustrated in Figure 2.
Anevaluation between the exact and numerical solutions under the same conditions is presented in Figure
3, demonstrating close agreement between the two. The corresponding absolute error for § = 1.3, M =
100, and At = 0.001 is shown in Figure 4, highlighting the accuracy of the proposed approach. To further
assess convergence properties, Table 4 presents the experimental order of convergence (EOC) where
values computed along the spatial grid for f = 1.5andAt = 0.001. The observed convergence behavior
aligns well with theoretical expectations, confirming the method's validity. The absolute numerical errors
at selected grid points for problem no.1 by using At = 0.001 and M = 100 are provided in Table 1. The
results indicate that the proposed scheme yields significantly improved accuracy compared to the sinc-
Chebyshev collocation method (Amin). In Table 2, absolute and relative errors for the proposed method
are reported at x = 0.4,0.6,0.8and t = 0.4,0.8, with M = 100, At = 0.001, and 8 = 1.6. These results
further demonstrate the superior performance of the proposed approach. A detailed evaluation of the
absolute errors produced by the present technique, the variational iteration method (VIM) and the (Amin)
for various values of a is given in Table 3, highlighting the improved accuracy of our method across
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different fractional orders. The evolution of the numerical solution over time for f = 1.5, M = 100, and
At = 0.001 is depicted in Figurel.

( 0+ 1.99762y — 0.0677902y? + 1.27469y3 — 6.53758y*,
—0.0342852 + y(2.69243 + y(—5.0005 + y(14.9853 — 16.8606y))),
—0.574734 + y(8.18834 + y(—24.6273 + y(42.5987 — 27.6653y))),
—3.23138 + y(26.1587 + y(—67.2506 + y(82.2744 — 37.7725y))),
—11.2852 + y(66.8892 + y(—139.321 + y(132.042 — 46.9499y))),
—29.8998 + y(141.878 + y(—244.696 + y(189.364 — 54.9713y))),
—65.9286 + y(262.143 + y(—384.147 + y(251.253 — 61.6391y))),
—127.266 + y(436.341 + y(—555.026 + y(314.381 — 66.7892y))),
—221.743 + y(668.845 + y(—751.117 + y(375.206 — 70.2946y))),
—355.606 + ¥(957.925 + y(—962.693 + y(430.11 — 72.0692y))),
—531.676 + y(1294.19 + y(—1176.77 + y(475.538 — 72.0692y))),
—747.321 + y(1659.45 + y(—1377.56 + y(508.142 — 70.2946y))),
—992.425 + y(2026.07 + y(—1547.15 + y(524.916 — 66.7892y))),
—1247.54 + y(2357.01 + y(—1666.26 + y(523.327 — 61.6391y))),
—1482.46 + y(2606.57 + y(—1715.25 + y(501.426 — 54.9713y))),
—1655.42 + y(2721.86 + y(—1675.12 + y(457.949 — 46.9499y))),
—1713.15 + y(2645.08 + y(—1528.63 + y(392.389 — 37.7725y))),
—1591.93 + y(2316.44 + y(—1261.41 + y(305.053 — 27.6653y))),
—1218.67 + y(1676.17 + y(—862.213 + y(196.892 — 16.8606Y))),

\—591.69 + y(771.51 + y(—375.194 + y(80.879 — 6.53758y))),

0.00,0.05)
0.05,0.10)
0.10,0.15)
0.15,0.20)
0.20,0.25)
0.25,0.30)
0.30,0.35)
0.35,0.40)
0.40,0.45)
0.45,0.50)
0.50,0.55)
0.55,0.60)
0.60,0.65)
0.65,0.70)
0.70,0.75)
0.75,0.80)
0.80,0.85)
0.85,0.90)
0.90,0.95)
0.95,1.00]

f) =

ye|
y€E|
ye|
y€E|
ye|
y€E|
ye|
y€E|
ye|
y€E|
ye|
y €|
ye|
y€E|
ye|
y€E|
ye|
y€E|
ye|
y€E|

Table 1: Exact and Approximate solution for Problem.1 with f# = 1.3 and At = 0.001

y Exact Solution | Approximate solution Error

0. 1. 1. 1.01674*10"-12
0.01 0.975187 0.975191 4.04674*10"-6
0.02 0.950747 0.950755 7.7968*10"-6
0.03 0.926679 0.92669 0.0000112662
0.04 0.90298 0.902994 0.0000144701
0.05 0.879648 0.879666 0.0000174232
0.97 0.000155885 0.000162564 6.67925*10"-6
0.98 0.0000565685 0.0000621414 5.57288*10"-6
0.99 0.00001 0.0000141509 4.15091*10"-6
1. 0. 2.11758*10"-22 2.11758*107-22

Table 2: Absolute errors for Problem 1 forM = 100 and At = 0.001 with different values of

y Method [39] Proposed Method

B=15 £=19 f=15 £=19
0.1 | 87104x10™ 5.0451x107 2.4413x10°° 1.1332x10°°
02 | 87782x10™ 7.5329x107° 1.8208x10°® 1.0675x10°°
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0.3 16.2088x10™ 1.1242x10™ 1.3064x10° 9.9868x10°

04 157014x10™ 1.6773x10™" 8.9107x10” 9.25794x10°
0.5 1 51475%10™ 2.5023x10™ 5.6741x10°° 8.47752x10°°
0.6 | 48947x10™ 2.5023x10™ 3.2762x10° 7.62788x10°
0.7 1 51672x10™ 2.5023x10™ 1.6256x10°° 6.67952x10°
0.8 | 53918x10™ 2.5023x10™ 6.2141x10° 5.57288x10°°
0.9 1 6.0661x10™* 2.5023x10~° 1.4150x10°° 4.15091x10°°

Table.3: Absolute and relative errors for Problem no.1 forM = 100 and At = 0.001 with value

of =1.6
T Y Method [39] Proposed method
L, L, Lo L,

0.4 0.4 9.3726x107* | 1.3282x107 | 1.0077x10°° | 3.1034x10°°
0.6 9.4592x107* | 1.6950x107 | 1.2017x10°° | 4.4392x10°°
0.8 6.5448x107" | 1.4462x10™" | 2.4137x10° | 6.9530x10°

0.8 0.4 1.7359x10™ | 8.6999x10™* | 5.1096x10° | 1.9751x10°
0.6 1.2080x10™" | 1.6683x107 | 3.5474x10°* | 4.8718x10"*
0.8 2.4657x107 | 1.9263x107 | 4.1031x107 | 2.5972x107

Table 4: Comparison of absolute errors for Problem1 using M = 100 and At = 0.001with =

1.4 or 1.6.
B (y, t) Method [39] Method [29] Proposed
method
1.4 (0.10,0.10) 9.2852x107 8.4385x10™ 2.1509x107
(0.30,0.30) 3.5651x10 5.3780x10° 1.0721x10°°
2.1509%107
(0.50,0.50) 6.4449x10™ 5.3227x10™ 6.8403x10™°
(0.70,0.70) 9.1443x10™ 1.9159%107° 2.4912x10°°
(0.90,0.90) 9.2321x10™ 1.8996x107 4.2507x107
1.6 (0.10,0.10) 4.1518x10™* | 1.1685x10™ 6.4258%107
(0.30,0.30) 1.7757x107> 2.8863x107° 5.8719x107
(0.50,0.50) 3.8327x107 1.7692x107 24171x10°

pg. 15




KJMR VOL.02 NO. 09 (2025) NUMERICAL APPROXIMATION

(0.70,0.70) 6.1379x107 1.4334x10°7° 3.3217x10™
(0.90,0.90) 3.8618x107 1.7449x107 2.3148x107

1.5-\\
1.0}

051

2 - 6 8 10

FIGURE 1: Numerical solution of Problem 1 for At = 0.001 and M = 100, withff = 1.5 at
different time stages

FIGURE 2: Exact and Approximate solution for Problem1 using At = 0.001and M = 100, with
B = 1.5 at different time stages.
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2 4 6 8 10

FIGURE 3: Approximate and exact solution for Problem 1 for At = 0.001 and M = 100
with # = 1.5 at different time stages.

Absolute emor

0.004
0.003f
0.002+

0.001}

ey —

1

0.2 D‘d 06 0‘8 1.0
FIGURE 4: Absolute errors for Problem 1 for At = 0.001 and M = 100 withf = 1.5

Problem 2
Consider the following KGE [39]

L

Zpu(n,)—Lsu(y,0+u(y,0+3u’ (.0 = f (1,0, 0<y<10<z<l  (40)
Where the factoring term f (y, t) on right hand side is given by
S, =1n@G+ B)sin(zy)t” + 1+ 77 sin(zry) + 2 [sin(zy)t* T

In Table 6, error norms corresponding to various values of the fractional derivative order {3 are reported
for N=40 and M = 1000. As observed in earlier examples, the computed error norms remain
consistently low across the selected values of 3, demonstrating the method’s reliability. Table 7 provides
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a comparison of absolute errors at specific nodal points y at time t = 1, for fractional orders 8 = 1.3,1.6,
and 1.8, against the results obtained by Nagy [39]. To ensure alignment of nodal points for fair
comparison, parameters were set to N = 100 and M = 1000. The results clearly indicate that the Crank—
Nicolson finite difference method employed in the present work offers higher accuracy compared to the
shifted Chebyshev polynomial-based method used in Nagy’s study [39]. Further comparisons are provided
in Tables 8 and 9, which display absolute errors for fractional orders 8 = 1.4 and 8 = 1.6, evaluated
against the methods of Odibat& Momani [47], Nagy [39], Amin et al. [51], and Sahu & Jena Using a
consistent setup with N = 100, M = 1000, and t = 1, the results demonstrate that the proposed method
yields lower absolute errors at most of the selected points. Specifically, it outperforms the techniques of
Odibat& Momani [47], Nagy [39], and Amin et al. [51] and exhibits improved accuracy over Sahu & Jena
at the majority of the nodal points. These comparisons underline the robustness and effectiveness of the
proposed numerical approach. Finally, Tables 9 and 10 present a comparative analysis of absolute error
norms with those reported by Yaseen et al. and Vivas-Cortez et al. again using N = 100 and M = 1000.
The results confirm that for = 1.5, the proposed Crank—Nicolson finite difference method achieves
superior accuracy compared to Yaseen et al.’s trigonometric B-spline approach. Additionally, for § = 1.7,
the results obtained show close agreement with those of Vivas-Cortez et al. further validating the
effectiveness of the presented method across a range of fractional orders.

Table 5: Approximate solutions for Problem 2 using different values g with N = 40 and M =

1000.

y Exact Solution Approximate solution Error

0.000 0.000000 —9.22821x107"* 9.22821x107"*
0.025 0.0784591 0.0784485 0.0000105758
0.050 0.156434 0.156414 0.0000208249
0.075 0.233445 0.233415 0.0000304374
.625 0.923880 0.923826 0.0000536748
0.650 0.891007 0.890950 0.0000565383
0.675 0.852640 0.852581 0.0000592317
0.700 0.809017 0.808956 0.0000614815
0.975 0.0784591 0.0784485 0.0000105758
1.000 0.000000 —8.22821x10°" 8.22821x10°"7

Table 6: The error norms for different values of fractional order p for problem no.2

T B=13 B=1.6 B=1.8

L, L, L, L, L, L,
0.1 | 69373x10° | 4.3242x10°° | 7.0015x10° | 5.1247x10° | 8.1802x10° | 7.5164x10°°
0.2 | 41170x107° | 2.4564x10° | 5.9918x107° | 2.6572x10° | 6.3237x10” | 3.4091x10°
0.3 | 35647x107° | 1.7971x10° | 4.5344x10° | 2.7178x10° | 5.4390x10° | 3.0981x10~
0.4 | 86204107 | 6.4005x10™" | 9.2004x10™* | 7.1272x10° | 9.7510x107* | 7.4219x10™*
0.5 | 2.8552x107° | 1.1297x10” | 3.0121x10” | 2.3123x10° | 4.6974x10” | 3.3691x10°
0.6 | 55875x107 | 3.6159x107° | 5.9918x10° | 4.0151x10° | 6.0913x10” | 5.1722x10°
0.7 | 43135x107° | 2.7024x10° | 5.4218x107° | 3.1792x10° | 5.5918x107° | 4.2091x10°
0.8 | 6.1729x107° | 3.3104x107° | 7.1280x10° | 3.5070x10° | 8.7377x10° | 4.6079x10°°
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9.4871x10™

5.0013x10™

9.5321x10™

4.0152x10™

9.8173x10™

5.0196x10™

3.9222x10™

1.0901x10™

48104107

2.1395x10™

5.8999x10™

3.3098x107"

Table 7: A comparison between absolute errors at different values of 8 for Problem no.2.

T B=15 B=1.7 B=1.9

SCCM [39] |Present | SCCM [39] | Present SCCM [48] | Present
0.1 | 1.6399x10° | 7.5291x107*| 1.5469 x10™ | 6.7030x10™* | 1.4382x10™° | 6.5975x10™
0.2 1 1.2805%x107 | 5.3005x107*| 1.1270x107 | 4.8750x107 | 9.4912x107" | 4.6663x10™
0.3 11.0872x10° | 4.9812x107 8.9660x10™" | 4.3207x10™ | 6.7910x10™* | 4.2007x10™*
0.4 | 84194x10™ | 3.8309x107| 6.3346x107" | 3.2154x107 | 3.9685x107* | 3.0259x107
0.5 | 7.8250x10™ | 2.9015x107| 5.6865x107" | 2.8591x107° | 3.2655x107* | 2.6045x107°
0.6 | 84189x107™ | 3.8309x107°| 6.3349x10™" | 3.2154x10™ | 3.9683x107* | 3.0259x10”°
0.7 | 1.0872x107 | 4.9812x107 8.9665x107 | 4.3207x10™* | 6.7910x10™* | 4.2007x10™*
0.8 1 1.2812x10° | 5.3005x107*| 1.1270x107 | 4.8750x107 | 9.4912x107" | 4.6663x10™*
0.9 1 1.6399x10° | 7.5291x107*| 1.5474x107 | 6.7030x10™* | 1.4382x10™° | 6.5975x10™

Table 8: A comparison between absolute errors at different points for Problem 2.
(y,t) g=1.4

(odibat&Momani2009) SCCM(Nagy) [39] | (Shau &jena) | Present

(0.1,0.1) 1.0406x107° 2.3810x107° 5.84379x10” | 5.3893x10™°
(0.2,0.2) 1.4427x107 5.2648x107 2.15665x107° | 4.9304x10°
0.3,0.3)  167118x10~ 6.0189x10™° 6.47025x10° | 3.2817x10°°
0.4,04)  130496x10~ 6.4434x107 6.77908x10™ | 4.2545x107°
(0.5,0.5) 1.6352x107 4.0015x107° 3.89738x107 | 5.0074x10™
(0.6,0.6) | 49595x107 1.5839x10™ 1.48999x1072 | 4.8309x10™
(0.7,0.7) 1.0678x10™" 9.1925x10™* 4.10207x107 | 2.0151x10™*
(0.8,0.8) | 1.6945x10”" 2.9089x107 8.04526x107 | 7.5068x10™
0.9,0.9) | 1.7523x10™" 3.8739x107 9.42916x107 | 3.2029x10™
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Table 9: A comparison between absolute errors at different points Problem no.2.

Y =16
(odibat&Momani2009) (Nagy,20f7) [39] | (Shau&Jena,2024) | Present

(0.1,0.1) | 1.0405x107 2.3806x107° 2.20656x107° 2.0473x107°
(0.2,0.2) |1 4428107 5.2648x107 1.41781x107 4.7840%x10°°
(0.3,0.3) | 6.7118x107° 6.0189x107° 5.88596x10™° 5.6735x10°°
(0.4,0.4) | 30496x10~ 6.4444x107 7.77195%10°7° 3.5441x107
(05,0.5) | 1.6355x107 4.0015x107 5.35288x10™ 2.3879x107°
(0.6,0.6) | 49596x107 1.5839x10™ 2.37365%x107 2.0032x107
0.7,0.7) | 1.0678x10™" 9.1925x10™ 7.42469x107 1.1057x10™
(0.8,0.8) | 1.6946x10™" 2.9054x107 1.64619x107 6.5608x10™*
(0.9,0.9) | 1.7525x10"" 3.8736x107 2.2292x107 5.8774x10™

Table 10: A comparison between absolute errors at different nodal points Problem no.2.

Y B=1.5
(Yaseen. et al,2021) | (vivas-cortezet al,2024) | Present

0.1 2.2439x10™ 3.7668x107° 3.5712x107°
0.2 4.4182x10™ 7.0998x107° 6.1072x10°°
0.3 6.3348x10™ 9.6628x107° 9.5518x107°
0.4 7.6864x10™ 1.1253%x10™ 1.0252x107°
0.5 8.1775x10™ 1.1796x10™ 7.0031x107°
0.6 7.6863x10™* 1.1256x10™* 5.7518x107
0.7 6.3348x107" 9.6629x107 4.6319x107
0.8 4.4182x107™ 7.0998x107° 43012x107
0.9 2.2438x10™ 3.7669x107° 3.0984x107°
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10 20 30 40

FIGURE 5: Numerical solution of Problem 2 with M = 1000 at different values of f.

FIGURE 6: Exact and Approximate solution for Problem 2 with M = 1000 and different values
of f.
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10 20 30 40

FIGURE 7: Exact and Numerical solution for Problem 2 with M = 1000 and different values of
B.

Absolute error

0.00006 |

0.00005 |
0.00004
0.00003
0.00002
0.00001 |
02 04 06 08 10"

FIGURE 8: Absolute error for Problem 2 with M = 1000 and different values of f.

8. Conclusion

In this study, a numerical analysis of the time-fractional Klein—-Gordon equation has been carried out using
the redefined extended cubic B-spline (RECBS) collocation method. The temporal domain is discretized
using a finite central difference approach, while the spatial domain is approximated through RECBS basis
functions to build the solution curve. The proposed numerical scheme is proven to be unconditionally
stable, with the spatial and temporal convergence orders theoretically established as O (h?)andO (At?>™%),
respectively. The numerical results validate the expected convergence rates and confirm the method’s
accuracy and robustness. Furthermore, comparative assessments with existing techniques such as the
Variational Iteration Method (VIM) [29] and the Sinc—Chebyshev Collocation Method (SCCM) [39]
demonstrate that the proposed approach achieves superior performance in terms of accuracy and
efficiency.
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