
pg. 1 
 

 Kashf Journal of Multidisciplinary Research 

Vol: 02 - Issue 09 (2025) 

P-ISSN: 3007-1992 E-ISSN: 3007-200X 

https://kjmr.com.pk 

 

NUMERICAL APPROXIMATION OF TIME-FRACTIONAL KLEIN–

GORDON EQUATION USING B-SPLINE COLLOCATION 

TECHNIQUES  

Javeria Kousar* 

Faculty of Sciences, The Superior University, Lahore, Pakistan 

Muhammad Amin 

Faculty of Sciences, The Superior University, Lahore, Pakistan 

Manzar Abbas 

Faculty of Sciences, The Superior University, Lahore, Pakistan 

Ayesha Samra 

Faculty of Sciences, The Superior University, Lahore, Pakistan 

*Corresponding Author: iamjaveria717@gmail.com 

   Article Info 

 
  

 
This article is an open 

access article distributed   

under   the   terms   and 

conditions of the 

Creative Commons 

Attribution (CC BY) 

license 

https://creativecommon

s.org/licenses/by/4.0 

Abstract 

This study proposes a numerical technique based on a hybrid cubic B-Spline 

functions for obtaining approximate solutions to the time-fractional Klein-

Gordon equation. Fractional derivative is discretized using a finite difference 

approach in Caputo sense, while the spatial domain is handled through the 

application of a hybrid cubic B-Spline scheme on a structured grid. To assess 

the accuracy and performance of the method, some computational 

experiments have been conducted. The outcomes demonstrate that the 

proposed technique delivers superior accuracy and computational efficiency 

when compared to several existing methods. 
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Introduction 

Fractional-order differential equations have emerged as a significant area of study because of their wide-

ranging applications in modeling complex systems. They are widely employed in disciplines such as 

traffic flow analysis, earthquake prediction, physical process simulation, signal processing, financial 

modeling, control systems, fractional dynamics, and various forms of mathematical modeling[1-6]. Unlike 

classical integer-order models, fractional-order formulations are capable of incorporating memory and 

hereditary effects, making them highly effective for describing real-world phenomena with long-term 

dependencies. 

Over the past few decades, research on fractional-order differential equations has expanded rapidly, 

leading to the development of a variety of analytical and numerical techniques to address such problems[7-

19]. This progress has been driven by the necessity to obtain accurate and efficient solutions for models 

that cannot be solved using conventional approaches. The diversity of problems in science and engineering 

has encouraged the creation of specialized methods, each offering distinct advantages depending on the 

nature of the application. 

Several definitions of fractional derivatives have been introduced, each suited to different theoretical 

frameworks and physical interpretations. Comprehensive discussions and comparative analyses of these 

definitions can be found in the literature[20-26].  

In this study, we focus on the time-fractional nonlinear Klein–Gordon equation (KGE), which plays an 

important role in describing nonlinear wave propagation and dynamic behaviors in various physical 

systemsplays a pivotal role in modeling relativistic wave phenomena and scalar field dynamics, 

particularly within the framework of quantum mechanics and other areas of theoretical physics. In recent 

years, its generalized form where the classical time derivative is replaced by a fractional-order derivative 

has garnered considerable interest. This time-fractional Klein-Gordon equation (TFKGE) offers a more 

versatile and accurate framework for representing complex physical processes that exhibit memory-

dependent and hereditary behavior, such as those encountered in viscoelastic materials, anomalous 

diffusion, and systems characterized by nonlocal interactions. 

Analytical solutions of the TFKGE are often challenging to obtain due to the inherent no locality of 

fractional derivatives. As a result, numerical methods have become increasingly essential for 

approximating solutions to such equations. Among various numerical strategies, spline-based techniques 

particularly those using cubic splineshave demonstrated significant promise. These methods benefit from 

the smoothness and continuity of cubic spline basis functions, which provide stable and accurate 

approximations, especially for differential equations involving higher-order spatial terms. 

In this study, we explore a numerical approach for solving the time-fractional Klein–Gordon equation by 

employing a collocation method based on cubic spline functions. The fractional derivative is interpreted 

in the Caputo sense, which is well-suited for physical applications due to its compatibility with standard 

initial conditions. The time discretization is achieved using finite difference schemes, while the spatial 

discretization is handled using cubic spline basis functions. 

The application of fractional differential equations spans a wide range of scientific disciplines, including 

transport processes, geophysics, signal processing and financial modeling, engineering systems, and 

applied mathematics. Their relevance stems from their ability to accurately capture complex behaviors 

not easily described by classical models. This growing interest has led to an expanding body of research 

focused on both analytical and numerical treatment of such equations. Numerous techniques have been 
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proposed to handle the intricacies of fractional calculus, each grounded in different definitions of 

fractional derivatives, such as the Caputo, Riemann–Liouville, and Grünwald–Letnikov forms. 

In this work, we focus on the time-fractional nonlinear Klein–Gordon equation expressed in the general 

form: 
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WhereCaputo fractional time derivative is represented by
∂β

∂tβ
and u= u(y, t)represents the displacement of 

the wave at (y, t). β ∈ (1,2]show the fractional order of the time derivative while f(y, t)represents to 

source term. Here ρ, ρ1 and ρ2 are real numbers, and sigma is equal to σ = 2 or 3.  

The time-fractional Klein–Gordon equation (TFKGE) has been utilized in various fields such as 

condensed matter physics, quantum field theory, and nonlinear dynamics. Multiple analytical and semi-

analytical techniques have been proposed for solving such equations, including the Adomian 

decomposition method, variational iteration methods, homotopy analysis methods[27-30] and spectral 

approaches. For instance, Jafari et al. demonstrated the use of fractional B-Spline functions for 

constructing semi-analytical solutions[31]. Vong and Wang[32, 33] developed compact finite difference 

schemes for both one and two-dimensional TFKGE problems, confirming their stability and convergence 

through energy-based analyses[34]. In another direction, Dehghan introduced a meshless method using 

extended basis functions in fully implicit schemes to solve fractional Klein–Gordon and sine-Gordon 

equations[35]. 

Further developments include the application of iterative correction procedures and the Adomian 

decomposition technique by Jafari to obtain approximate solutions to time-fractional KGEs[36].Chanet 

al. addressed nonlinear fractional differential equations using spectral methods[37], while Lyu and Vong 

proposed a linearized second-order approach specifically designed for fractional nonlinear Klein–Gordon 

equations[38]. Nagy [39]introduced a sinc-Chebyshev collocation method, which merges sinc functions 

with second order shifted Chebyshev polynomials to effectively tackle nonlinear TFKGEs. Sahu and Jena 

employed a hybrid scheme combining a Newton–Raphson method with a modified Laplace-Adomian 

decomposition technique for solution approximation[40].Yaseen et al. proposed a trigonometric B-spline 

collocation scheme to enhance the accuracy of nonlinear TFKGE solutions[41, 42]. More recently, Vivas-

Cortez etal. improved cubic spline-based methods by integrating an extended spline formulation with the 

Crank–Nicolson scheme, establishing numerical stability and convergence[43]. 

In this work, we introduce a numerical method to solve the time-fractional Klein–Gordon equation using 

newly developed restructured Hybrid Cubic B-Spline (HCBS) basis functions. These functions represent 

a simplified version of traditional cubic B-splines, with an additional adjustable parameter that enhances 

adaptability to the solution's shape. The Caputo fractional derivative is discretized using a central 

difference scheme, while spatial interpolation is achieved through HCBS basis functions. 

The paper is structured as follows: Section II presents the mathematical formulation of the Caputo 

fractional derivative and the time discretization using finite differences. The subsequent sections provide 
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implementation details of the HCBS method, its stability analysis, numerical results, and a comparison 

with existing techniques. 

1.    Time Discretization 

Let consider the time domain [0, T] which is equally divide into Q subintervals of length
T

t
Q

 = .Here, 

endpoint is 
0 10 ..., Qt t t T=   =  and 

qt q t=  and 0:1:q Q= . Firstly, Caputo fractional derivative is 

discretized at 
1qt t += [44]. 
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Where 2 2

1( 1) , ( )k ra k k t a  − −

+= + − = − and 1q

tJ +


. The truncation error is bound i.e. 

1 2
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Putting equation (4) into (1) 
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For  =1 we get semi directional numerical system 
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2.    Extended cubic B-spline functions 

Consider the spatial interval  ,  c d divided into N  equal segments, each of length ( ) /h d Nc= − this result 
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Here  with  2 1( )n n − −   is a real number responsible for fine tuning the curve and n gives the 

degree of ECBS used to generate different forms of ECBS functions the approximate solution 

( ) ( , )q q

n nU U y t = and its first two derivatives can be expressed with respect to the spatial variable y at 

the qthtime step as follow[46], 
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3.    Redefined extended cubic B-Spline function 

The basic functions 1 0 1, ,  ...,  Mt t t− + in a standard ECBS collocation method,  do not satisfy the boundary 

conditioned when Dirichlet type end conditioned are applied ,as they do not vanish at the spatial domain 
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the boundaries this is achieved by introducing a weight function ( )  ,y s  which effectively removes 
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4.    Space Discretization 
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Using (12) the last expression takes the form  
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For numerical procedure, apply the given initial conditioned to acquire the set of equations. 
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1:1: 1, 0:1:                                                                 (21)q q q

n n ne n M q Q = − = − =  

Where 
1 2 1, ,......

s
q q q q

Ne e e e −
 =    

1 1 1

1 1 1 4 1 2 1 2 5 1 1 1 4 1

1 1 1 1 1

1 1 2 1 1 1 1 2 1 1 1 1 1 1

1

1 1

2 1 1

( ) ( ) ( )

2 ( ) ( ) [ ( 2 )

( 2 ) (

q q q

n n n

q
q q q q q q q k q k q k

n n n n n n k n n n

k

q k q k q k q k

n n n n

a w a wa e a w a wa e a w a wb e

a e a e a e a e a e a e w a e e e

a e e e a e

  

  

+ + +

− +

− − − − + − − −

− + − + − − −

=

− + − − − −

−

+ + + + + + + +

= + + − + + − − +

+ − + +



1 1

1 1
2 )                                                 (22)

q k q k

n n
e e

+ − − −

+ +
− +

 

The error equations satisfied the end conditions  

0

1( ), 1:1: ,                                                                                                      (23)n ne y n N= =  

And 

0 3 4( ), ( ), 0 :1:                                                                           (24)q q

q n qe t e t q Q = = =  

We define the grid function as 

𝑒𝑞 = {
𝑒𝑛
𝑞

 if 𝑦𝑛 −
𝑔

2
< 𝑦 ≤ 𝑦𝑛 +

𝑔

2
, for 𝑛 = 1: 1:𝑁 − 1,

0  if 𝑏 ≤ 𝑦 ≤
2𝑏 + 𝑔

2
 or 

2𝑎 − 𝑔

2
≤ 𝑦 ≤ 𝑎.

                                                 (25)  

Now  

2

( ) ( ) , 1:1:                                                                                              (26)
iny

a bq

q

q

e y e m q Q


 −



=−

= =  

Where, 
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( )
2

1 ( )                                                                                                          (27)
iny

a b

a

q

q a b

b

m e y dx


 
−

−

−
=   

Taking the 
2
norm, we get  

2 2

2 2

2 2 22 1 11 1

2 2

2
1 1

2 1

2

( ) ( )

( )

g h
m

h g
m

b y aQ Q
q q q q q

m

m mb y a

a

q

b

e g e e dx e dx e dx

e dx

+ +− −

= = − −

= = + +

=

   



 

From Perceval equality we have 
2

2( ) ( )

a

q

m

b

e m dx n


−

= so the above expression can be written as 

2
2

2
( )                                                                                                                    (28)q

q

q

e e m


=−

=   

Now, the solution of Fourier series, 

𝑒𝑘
𝑞 = 𝜀𝑞𝜀

𝑖𝑣𝑘𝑔                                                                                                                                       (29) 

Where, And 2 v
a b

u 
−

=  using equation (29) in equation (22) and then dividing by 
iukge  

1 1 1 4 1 2 1 2 5 1 1 1 1 4 1

1 2 1 1 1 2 1 1 1 2 1 1

1 1

1

( ) ( ) ( )

2 ( ) ( ) ( 2 )

[ ( 2

iug iug

q q q

iug iug iuh iug iug iug iug

q q q q q q q k q k q k

q
iug

k q k q k q k

k

a w a wa e a w a wa a w a wa e

a e a a e a e a a e a e e e

w a e

     

          

   

−

+ + +

− − − −

− − − − + − − −

−

− + − − −

=

+ + + + + + + +

= + + − + + + − +

− − + 1 2 1 1 1 1 1) ( 2 ) ( 2 )       (30)iug iug iug iug

q k q k q k q k q k q ke a a e e e     − + − − − − + − − −+ − + + − +

 

After collecting like terms, we know that 2cos( )iug iuge e ug−+ = . So, we get. 

( )1 1

1
]1 1 2 1

1

[2 ( )                                              (31)q q k

q

q q k q k q k
k

a a


    + − + +− − − −
=

= − −  +
 

Where, 

2

1

2 2{ 6 ( 4 ) sin ( )}
2

12 (2 )sin ( )
2 1 for u>-21           ug

g u

ug
u

 
− + −

 +
= + +  

6.    Convergence of the Scheme 

We examine the merging of CIMSS by doing the following. The strategy Khalid et al. [48]depict in their 

ponder. At this point, wear starting using the taking after valuable hypotheses[49, 50]. 

1i = −
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Theorem 1. Suppose,  0 1, ,......, Ma x x x b = = = which refer to a partition and we have  ,a b for 

0,1,2,......,m M=  and v C with .Mx mh=  Suppose,  4 ,v C a b  and  2 , .f C a b   Suppose, ( ),V x t  is 

the spline that presents the preparation bend of this issue. At that point there exist constants which are not 

dependent on h. so,  

4( ( , ) ( , )i i

iu y t U y t E g −


−  ( )20, 0 1, 3, 2t i  =  

Lemma: The extended B-spline gratify the difference
0

( , ) 1.75
N

n

n

t y 
=

  for ( )0 31 3y   

Proof: By the triangle inequality we have 

0 0

( , ) ( , )
N N

n n

n n

t y t y 
= =

   

For any knot ny  ,we have  

7
1 1 4

0

( , ) ( , ) ( , ) ( , 1
N

n n n n n n n

n

t y t y t y t y   − +

=

= + + =   

We obtain  

1 1
1 1,12 12

1 1
1 2 124 24

( , ) (8 ), ( ) (8 )

( , ) (4 ), ( , ) (4 )

n n n n

n n n n

t y t y

t y t y

   

   

− −

+ − −

= + = +

= − = −
 

Then for 
1 1, , ( , ), ( , )n n n ny y y t y t y − − area bounded above by 1

12
(8 )+  

Similarly, 1 2( , ), ( , )n nt y t y + − 1 2( , ), ( , )n nt y t y + − are bounded above by 1
24

(4 )−
 

for any point 1n ny y y−   1n ny y y−   we obtain  

1
1 1 2 12

0

( , ) ( , ) ( , ) ( , ) ( , ) ( 20)
N

n n n n n

n

t y t y t y t y t y     − + −

=

= + + + = +  

Since [ 8,1] −  we have 5
3

1 1.75 +  5
3

1 1.75 +  hence  

( , ) 1.75nt y    

Theorem 2:The extended cubic B-splineestimate𝑢(𝑦, 𝑡) the analytical exact solution 𝑢(𝑦, 𝑡)and if 
2[0,1]E c then 2( , ) ( , ) 0u y t u y t E g t


−     

E 2( , ) ( , ) 0u y t u y t E g t


−                                                                                                 (34) 

Where g is reasonably small and E >0 is a constant not depending on g  
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Proof: Suppose, ( )
0

( ) ( ),
N

n

n

u t dn t yy 
=

= is a spline which is calculated for the estimated solution of 

( ),U y t and the exact solution ( ), .u y s Suppose, if ( , ) ( , )n nlu y t y y t= for 0 :1:n N= be the collocation

c conditions then ( , ) ( , ), 0:1:nlu y t y y t n N= = . Now, the problem can be explained in the form of a 

difference equation ( ( , ) ( , ))n nL U y t U y t− as, 

1 1 1

1 1 1 4 1 2 1 2 5 1 1 1 4 1( ) ( ) ( )q q q

n n na w a wa a w a wa a w a wa     + + +

− ++ + + + + + + +                                      (35) 

2

1 1 1 1 1
1 1 2 1 1 1 1 2 1 1 1 1 1 1

1

1 1 1 1 11
2 1 1 1 1

2 ( ) ( ) [ ( 2 )

( 2 ) ( 2 )]

q
q q q q q q q k q k q k

n nn n n n n n nk
k

q k q k q k q k q k q k q
n n n nn n n g

a a a a a a p a

a a

           

      

− − − − + − − −
− + − + − − −

=

− + − − − − + − − − +
+ + +

= + + − + + − − +

+ − + + − + +


 

The boundary conditions can be written as 1 1 1

1 1 2 1 1 0, 0, ,q q q

n n na a a n N  + + +

− ++ + = =  

Where 
, 0 :1:q q q

n n nd n N = − = 2[ ], 0:1:q q q

n n ng x x n N = − = , 0 :1:q q q

n n nd n N = − =  

And 2[ ], 0:1:q q q

n n ng x x n N = − = . 

We have  

2 4q q q

n n ng x x Eg = −  2 4q q q

n n ng x x Eg = −   

We describe max{ : 0 }, , max{ : 0 }q q q q q q

n n n nm M e e e m M  =   = =   for 0q = equation 

converts into the succeeding relation. 

1 1 1

1 1 4 1 2 1 2 5 1 1 1 4 1( ) ( ) ( )n n na wa wa a w a wa a w a wa     − ++ + + + + + + +  

= ( ) 2

0 0 0 11
1 1 1 2 1 1( )n n n ng

w a a a    − ++ + + +  

We get by using initial condition
0 0e = , 

2

1 1 1 1 1 11
2 1 2 5 1 4 1 1 1 1 1 1( ) ( )( ) ( )n n n n n ng

a w a wa a wa w a       + − + −+ + = + − + − +  

By putting absolute values of 
1,q

n n  and small g. then we get, 

4

2 2
1

61

( 2) 12( 2 ) (2 )

Eg

n g p g
e

   + + − − + +


 

By using boundary conditions, we accomplish that  

1 2

1e E g  
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Where 1E is independent of the spatial method, we suppose that 2k

n ke E g  true for 1:1:k q= . let 

max{ : 0 }kE E K q=    then  

1 1 1

1 1 4 1 2 1 2 5 1 1 1 4 1( ) ( ) ( )n n na pa wa a w a wa a w a wa     − ++ + + + + + + +
 

1 1

1 1 1 4 1 2 1 2 5 1 1 1( ) ( ) (q q

n na w a wa a w a wa a w a    + +

−+ + + + + + + + +  

2

1 1 1 1 1 1
1 2 3 1 1 2 1 1 4 3 2 1 1 2 1 1

10 0 0 1
1 1 1 2 1 1

( 2 )( ) .... ( 2 )( )

( )]

q q q
n nn n q q q n n

q
n nq n n g

w w w a a a w w w a a a

w a a a

     

   

− − −
− − − − − − +

+
− − +

− + + + + + − + + +

+ + + +

 

again, taking absolute values of 
0

1,q

n n  +  we have 

4

2 2
1

61

( 2) 12( 2 ) (2 )

Eg

n g p g
e

   + + − − + +


 

1
2 2

1 1 2 1 1 1

0

[2 ( ) ( 2 ) ]
q

q q q

n n n k k k

k

a a a w w w Eg Eg    
−

− + −

=

+ + − − − +
 

By using the boundary conditions, we get 1 2q

ne Eg+  1 2q

ne Eg+   

Hence, for all values of n, 

1 2q

ne Eg+                                                                                                                   (36) 

Now,
0

( , ) ( , ) ( ( ) ( ) ( )
N

n n n

n

u y t u y t d t t t y
=

− = −
s

 

Taking the infinity norm and applying lemma we obtain  

2( , ) ( , ) 1.75u y t u y t Eg


−                                                                                                     (37) 

Making use of the triangle inequality, we get  

( , ) ( , )u y t u y t


−  ( , ) ( , )u y t u y t


−  + ( , ) ( , )u y t u y t


−                                                                   (38) 

Using the inequalities 32) and (37) in (38) we obtain  

4 2 2

0( , ) ( , ) 1.75u y t u y t E g Eg E g


−  + =  

Where, 2

0 1.75E E g E= +  

2( )t  −  

We accomplish that the numerical approach converges unconditionally, therefore  

( , ) ( , )u y t u y t


− 
2Eg + 2( )t  −  
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Where E is a constant and (1,2]  hence, hypothetically the projected system is 2 2( )o g t −+  accurate. 

7.    NumericalResults and Discussion. 

To evaluate the accurateness and performance of the projected numerical scheme, several benchmark test 

problems are considered. The errors are measured using both the maximum norm (‖·‖₋∞) and the L₂ norm, 

defined respectively as follows[51]: 

𝐿∞ = 𝑚𝑎𝑥
0≤𝑛≤𝑁

|𝑈(𝑦𝑛, 𝑡) − 𝑢(𝑦𝑛, 𝑡)|, 

𝐿2 = √𝑔∑|𝑈(𝑦𝑛, 𝑡) − 𝑢(𝑦𝑛, 𝑡)|2
𝑁

𝑛=0

, 

Where𝑈(𝑦𝑛, 𝑡) represents the exact solution and 𝑢(𝑦𝑛, 𝑡) denotes the numerical approximation at the 

spatial node 𝑦𝑛 and time𝑡. 

Furthermore, the experimental order of convergence (EOC) is calculated to assess how the error decreases 

as the grid is refined. The EOC is determined using the following relation [52]: 

EOC =
1

𝑙𝑜𝑔2
𝑙𝑜𝑔 (

𝐿∞(2𝑛)

𝐿∞(𝑛)
), 

Which provides an estimate of the convergence rate based on the computed maximum norm errors at 

successive mesh refinements. 

Problem 1 

Suppose that thenonlinear time fractional KGE[39].  

22

2 ( , ) ( , )                 0 1,0 1                                                         (39)u u
yt

u y t f y t t y



 


+ =    −  

The piecewise defined estimated solution attained by using the projectedtechniquefor 𝛽 = 1.25, over the 

domain 0 ≤ 𝑥 ≤ 1with 𝑀 = 100, 𝑛 = 100, and time step 𝛥𝑡 = 0.01, is illustrated in Figure 2. 

Anevaluation between the exact and numerical solutions under the same conditions is presented in Figure 

3, demonstrating close agreement between the two. The corresponding absolute error for 𝛽 = 1.3, 𝑀 =
100, and 𝛥𝑡 = 0.001 is shown in Figure 4, highlighting the accuracy of the proposed approach. To further 

assess convergence properties, Table 4 presents the experimental order of convergence (EOC) where 

values computed along the spatial grid for 𝛽 = 1.5and𝛥𝑡 = 0.001. The observed convergence behavior 

aligns well with theoretical expectations, confirming the method's validity. The absolute numerical errors 

at selected grid points for problem no.1 by using 𝛥𝑡 = 0.001 and 𝑀 = 100 are provided in Table 1. The 

results indicate that the proposed scheme yields significantly improved accuracy compared to the sinc-

Chebyshev collocation method (Amin). In Table 2, absolute and relative errors for the proposed method 

are reported at 𝑥 = 0.4,0.6,0.8and 𝑡 = 0.4, 0.8, with 𝑀 = 100, 𝛥𝑡 = 0.001, and 𝛽 = 1.6. These results 

further demonstrate the superior performance of the proposed approach. A detailed evaluation of the 

absolute errors produced by the present technique, the variational iteration method (VIM) and the (Amin) 

for various values of 𝛼 is given in Table 3, highlighting the improved accuracy of our method across 
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different fractional orders. The evolution of the numerical solution over time for 𝛽 = 1.5, 𝑀 = 100, and 

𝛥𝑡 = 0.001 is depicted in Figure1. 

𝑓(𝑦) =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
   0 + 1.99762𝑦 − 0.0677902𝑦2 + 1.27469𝑦3 − 6.53758𝑦4, 𝑦 ∈ [0.00,0.05)
−0.0342852 + 𝑦(2.69243 + 𝑦(−5.0005 + 𝑦(14.9853 − 16.8606𝑦))), 𝑦 ∈ [0.05,0.10)
−0.574734 + 𝑦(8.18834 + 𝑦(−24.6273 + 𝑦(42.5987 − 27.6653𝑦))), 𝑦 ∈ [0.10,0.15)
−3.23138 + 𝑦(26.1587 + 𝑦(−67.2506 + 𝑦(82.2744 − 37.7725𝑦))), 𝑦 ∈ [0.15,0.20)
−11.2852 + 𝑦(66.8892 + 𝑦(−139.321 + 𝑦(132.042 − 46.9499𝑦))), 𝑦 ∈ [0.20,0.25)
−29.8998 + 𝑦(141.878 + 𝑦(−244.696 + 𝑦(189.364 − 54.9713𝑦))), 𝑦 ∈ [0.25,0.30)
−65.9286 + 𝑦(262.143 + 𝑦(−384.147 + 𝑦(251.253 − 61.6391𝑦))), 𝑦 ∈ [0.30,0.35)
−127.266 + 𝑦(436.341 + 𝑦(−555.026 + 𝑦(314.381 − 66.7892𝑦))), 𝑦 ∈ [0.35,0.40)
−221.743 + 𝑦(668.845 + 𝑦(−751.117 + 𝑦(375.206 − 70.2946𝑦))), 𝑦 ∈ [0.40,0.45)
−355.606 + 𝑦(957.925 + 𝑦(−962.693 + 𝑦(430.11 − 72.0692𝑦))), 𝑦 ∈ [0.45,0.50)
−531.676 + 𝑦(1294.19 + 𝑦(−1176.77 + 𝑦(475.538 − 72.0692𝑦))), 𝑦 ∈ [0.50,0.55)

−747.321 + 𝑦(1659.45 + 𝑦(−1377.56 + 𝑦(508.142 − 70.2946𝑦))), 𝑦 ∈ [0.55,0.60)
−992.425 + 𝑦(2026.07 + 𝑦(−1547.15 + 𝑦(524.916 − 66.7892𝑦))), 𝑦 ∈ [0.60,0.65)

−1247.54 + 𝑦(2357.01 + 𝑦(−1666.26 + 𝑦(523.327 − 61.6391𝑦))), 𝑦 ∈ [0.65,0.70)
−1482.46 + 𝑦(2606.57 + 𝑦(−1715.25 + 𝑦(501.426 − 54.9713𝑦))), 𝑦 ∈ [0.70,0.75)
−1655.42 + 𝑦(2721.86 + 𝑦(−1675.12 + 𝑦(457.949 − 46.9499𝑦))), 𝑦 ∈ [0.75,0.80)
−1713.15 + 𝑦(2645.08 + 𝑦(−1528.63 + 𝑦(392.389 − 37.7725𝑦))), 𝑦 ∈ [0.80,0.85)
−1591.93 + 𝑦(2316.44 + 𝑦(−1261.41 + 𝑦(305.053 − 27.6653𝑦))), 𝑦 ∈ [0.85,0.90)
−1218.67 + 𝑦(1676.17 + 𝑦(−862.213 + 𝑦(196.892 − 16.8606𝑦))), 𝑦 ∈ [0.90,0.95)
−591.69 + 𝑦(771.51 + 𝑦(−375.194 + 𝑦(80.879 − 6.53758𝑦))), 𝑦 ∈ [0.95,1.00]

 

Table 1: Exact and Approximate solution for Problem.1 𝒘𝒊𝒕𝒉 𝜷 = 𝟏. 𝟑 𝒂𝒏𝒅 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏   

y Exact Solution Approximate solution Error 

0. 1.  1. 1.01674*10^-12 

0.01 0.975187 0.975191 4.04674*10^-6 

0.02 0.950747 0.950755 7.7968*10^-6 

0.03 0.926679 0.92669 0.0000112662 

0.04 0.90298 0.902994 0.0000144701 

0.05 0.879648 0.879666 0.0000174232 

0.97 0.000155885 0.000162564 6.67925*10^-6 

0.98 0.0000565685 0.0000621414 5.57288*10^-6 

0.99 0.00001 0.0000141509 4.15091*10^-6 

1. 0. 2.11758*10^-22 2.11758*10^-22 

Table 2: Absolute errors for Problem 1 for𝑴 = 𝟏𝟎𝟎 𝒂𝒏𝒅 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏 with different values of 𝜷 

y Method [39] Proposed Method 

1.5 =
 

1.9 =
 

1.5 =
 

1.9 =
 

0.1 48.7104 10−  
45.0451 10−
 

62.4413 10−  
61.1332 10−
 

0.2 48.7782 10−
 

57.5329 10−
 

81.8208 10−
 

61.0675 10−  



KJMR VOL.02 NO. 09 (2025) NUMERICAL APPROXIMATION…… 

  
 

pg. 15 
 

0.3 46.2088 10−  
41.1242 10−  

61.3064 10−  
69.9868 10−  

0.4 45.7014 10−  
41.6773 10−  

78.9107 10−  
69.25794 10−  

0.5 45.1475 10−  
42.5023 10−  

65.6741 10−  
68.47752 10−  

0.6 44.8947 10−  
42.5023 10−  

63.2762 10−  
67.62788 10−  

0.7 45.1672 10−  
42.5023 10−  

61.6256 10−  
66.67952 10−  

0.8 45.3918 10−  
42.5023 10−  

66.2141 10−  
65.57288 10−  

0.9 46.0661 10−  
52.5023 10−  

61.4150 10−  
64.15091 10−  

Table.3: Absolute and relative errors for Problem no.1 for𝑴 = 𝟏𝟎𝟎 𝒂𝒏𝒅 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏 with value 

of 𝜷 = 𝟏. 𝟔 

T Y Method [39] Proposed method 

𝑳∞ 𝑳𝟐 𝑳∞ 𝑳𝟐 

0.4 0.4 49.3726 10−  1.3282
210−  

61.0077 10−  
63.1034 10−  

0.6 9.4592
410−  1.6950

210−  
61.2017 10−  

64.4392 10−  

0.8 6.5448
410−  1.4462

110−  
62.4137 10−  

66.9530 10−  

0.8 0.4 1.7359
410−  8.6999

410−  
65.1096 10−  

61.9751 10−  

0.6 1.2080
410−  1.6683

310−  
63.5474 10−  

64.8718 10−  

0.8 2.4657
410−  1.9263

210−  
74.1031 10−  

72.5972 10−  

Table 4: Comparison of absolute errors for Problem1  using 𝑴 = 𝟏𝟎𝟎 𝒂𝒏𝒅 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏with 𝜷 =
𝟏. 𝟒 or 1.6. 

β (y, t) Method [39] Method [29] Proposed 

method 

1.4 (0.10,0.10) 39.2852 10−  
48.4385 10−  

72.1509 10−  
(0.30,0.30) 23.5651 10−

 
35.3780 10−
 

61.0721 10−
72.1509 10−

 
(0.50,0.50) 26.4449 10−  

45.3227 10−  
66.8403 10−  

(0.70,0.70) 29.1443 10−
 

31.9159 10−
 

62.4912 10−
 

(0.90,0.90) 49.2321 10−
 

31.8996 10−
 

74.2507 10−
 

1.6 (0.10,0.10) 44.1518 10−
 

41.1685 10−  
66.4258 10−  

(0.30,0.30) 21.7757 10−  
52.8863 10−  

75.8719 10−  

(0.50,0.50) 23.8327 10−  
51.7692 10−  

62.4171 10−  
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(0.70,0.70) 26.1379 10−  
51.4334 10−  

83.3217 10−  

(0.90,0.90) 23.8618 10−  
51.7449 10−  

72.3148 10−  

 

FIGURE 1: Numerical solution of Problem 1 for 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏 𝒂𝒏𝒅 𝑴 = 𝟏𝟎𝟎, with𝜷 = 𝟏. 𝟓 at 

different time stages 

 

FIGURE 2: Exact and Approximate solution for Problem1 using 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏𝒂𝒏𝒅 𝑴 = 𝟏𝟎𝟎, with 

𝜷 = 𝟏. 𝟓 at different time stages. 
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FIGURE 3: Approximate and exact solution for Problem 1 for 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏 𝒂𝒏𝒅 𝑴 = 𝟏𝟎𝟎 

with 𝜷 = 𝟏. 𝟓 at different time stages. 

 

FIGURE 4: Absolute errors for Problem 1 for 𝜟𝒕 = 𝟎. 𝟎𝟎𝟏 𝒂𝒏𝒅 𝑴 = 𝟏𝟎𝟎 with𝜷 = 𝟏. 𝟓 

Problem 2 

Consider the following KGE [39] 

2

2

33
2

( , ) ( , ) ( , ) ( , ) ( , ),                   0 1,0 1        (40)
yt

u y t u y t u y t u y t f y t y t



 


− + + =      

Where the factoring term f (y, t) on right hand side is given by 

2 2 2 2 331
2 2

( , ) (3 )sin( ) (1 ) sin( ) [sin( ) ]f y t y t t y y t      + += + + + +  

In Table 6, error norms corresponding to various values of the fractional derivative order β are reported 

for N = 40 and M = 1000. As observed in earlier examples, the computed error norms remain 

consistently low across the selected values of β, demonstrating the method’s reliability. Table 7 provides 
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a comparison of absolute errors at specific nodal points y at time t = 1, for fractional orders β = 1.3,1.6, 
and 1.8, against the results obtained by Nagy [39]. To ensure alignment of nodal points for fair 

comparison, parameters were set to N = 100 and M = 1000. The results clearly indicate that the Crank–

Nicolson finite difference method employed in the present work offers higher accuracy compared to the 

shifted Chebyshev polynomial-based method used in Nagy’s study [39]. Further comparisons are provided 

in Tables 8 and 9, which display absolute errors for fractional orders β = 1.4 and β = 1.6, evaluated 

against the methods of Odibat& Momani [47], Nagy [39], Amin et al. [51], and Sahu & Jena Using a 

consistent setup with N = 100, M = 1000, and t = 1, the results demonstrate that the proposed method 

yields lower absolute errors at most of the selected points. Specifically, it outperforms the techniques of 

Odibat& Momani [47], Nagy [39], and Amin et al. [51] and exhibits improved accuracy over Sahu & Jena 

at the majority of the nodal points. These comparisons underline the robustness and effectiveness of the 

proposed numerical approach. Finally, Tables 9 and 10 present a comparative analysis of absolute error 

norms with those reported by Yaseen et al. and Vivas-Cortez et al. again using N = 100 and M = 1000. 

The results confirm that for β = 1.5, the proposed Crank–Nicolson finite difference method achieves 

superior accuracy compared to Yaseen et al.’s trigonometric B-spline approach. Additionally, for β = 1.7, 

the results obtained show close agreement with those of Vivas-Cortez et al. further validating the 

effectiveness of the presented method across a range of fractional orders. 

Table 5:  Approximate solutions for Problem 2 using different values 𝛃 with 𝐍 = 𝟒𝟎 and 𝐌 =
𝟏𝟎𝟎𝟎. 

y Exact Solution Approximate solution Error 

0.000 0.000000 –9.22821×10⁻¹⁴ 9.22821×10⁻¹⁴ 

0.025 0.0784591 0.0784485 0.0000105758 

0.050 0.156434 0.156414 0.0000208249 

0.075 0.233445 0.233415 0.0000304374 

.625 0.923880 0.923826 0.0000536748 

0.650 0.891007 0.890950 0.0000565383 

0.675 0.852640 0.852581 0.0000592317 

0.700 0.809017 0.808956 0.0000614815 

0.975 0.0784591 0.0784485 0.0000105758  

1.000 0.000000 –8.22821×10⁻17 8.22821×10⁻17 

Table 6: The error norms for different values of fractional order β for problem no.2
 

T 𝛃 = 𝟏. 𝟑 𝛃 = 𝟏. 𝟔 𝛃 = 𝟏. 𝟖 

L  2L  L  2L  L  2L  

0.1 66.9373 10−  
64.3242 10−  

67.0015 10−  
65.1247 10−  

68.1802 10−  
67.5164 10−  

0.2 54.1170 10−  
52.4564 10−  

55.9918 10−  
52.6572 10−  

56.3237 10−  
53.4091 10−  

0.3 53.5647 10−  
51.7971 10−  

54.5344 10−  
52.7178 10−  

55.4390 10−  
53.0981 10−  

0.4 48.6204 10−  
46.4005 10−  

49.2004 10−  
57.1272 10−  

49.7510 10−  
47.4219 10−  

0.5 52.8552 10−  
51.1297 10−  

53.0121 10−  
52.3123 10−  

54.6974 10−  
53.3691 10−  

0.6 55.5875 10−  
53.6159 10−  

55.9918 10−  
54.0151 10−  

56.0913 10−  
55.1722 10−  

0.7 54.3135 10−  
52.7024 10−  

55.4218 10−  
53.1792 10−  

55.5918 10−  
54.2091 10−  

0.8 56.1729 10−  
53.3104 10−  

57.1280 10−  
53.5070 10−  

58.7377 10−  
54.6079 10−  
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0.9 49.4871 10−  
45.0013 10−  

49.5321 10−  
44.0152 10−  

49.8173 10−  
45.0196 10−  

1  43.9222 10−  
41.0901 10−  

44.8104 10−  
42.1395 10−  

45.8999 10−  
43.3098 10−  

Table 7: A comparison between absolute errors at different values of 𝛃 for Problem no.2. 

T 𝛃 = 𝟏. 𝟓 𝛃 = 𝟏. 𝟕 𝛃 = 𝟏. 𝟗 

SCCM [39] Present SCCM [39] Present SCCM [48] Present 

0.1 31.6399 10−  
47.5291 10−  1.5469 

310−  
46.7030 10−  1.4382

310−  
46.5975 10−  

0.2 31.2805 10−  
45.3005 10−  1.1270

310−  
44.8750 10−  9.4912

410−  
44.6663 10−  

0.3 31.0872 10−  
44.9812 10−  8.9660

410−  
44.3207 10−  6.7910

410−  
44.2007 10−  

0.4 48.4194 10−  
53.8309 10−  6.3346

410−  
53.2154 10−  3.9685

410−  
53.0259 10−  

0.5 47.8250 10−  
52.9015 10−  5.6865

410−  
52.8591 10−  3.2655

410−  
52.6045 10−   

0.6 48.4189 10−  
53.8309 10−  6.3349

410−  
53.2154 10−  3.9683

410−  
53.0259 10−  

0.7 31.0872 10−  
44.9812 10−  8.9665

410−  
44.3207 10−  6.7910

410−  
44.2007 10−  

0.8 31.2812 10−  
45.3005 10−  1.1270

310−  
44.8750 10−  9.4912

410−  
44.6663 10−  

0.9 31.6399 10−  
47.5291 10−  1.5474

310−  
46.7030 10−  1.4382

310−  
46.5975 10−  

Table 8: A comparison between absolute errors at different points for Problem 2. 

(y,t) 𝛃 = 𝟏. 𝟒 

(odibat&Momani2009)  SCCM(Nagy) [39] (Shau &jena) Present 

(0.1,0.1) 1.0406
510−  2.3810

510−  5.84379
910−  5.3893

810−  

(0.2,0.2) 1.4427
410−  5.2648

510−  2.15665
610−  4.9304

610−  

(0.3,0.3) 6.7118
510−  6.0189

610−  6.47025
510−  3.2817

610−  

(0.4,0.4) 3.0496
310−  6.4434

510−  6.77908
410−  4.2545

510−  

(0.5,0.5) 1.6352
210−  4.0015

510−  3.89738
310−  5.0074

410−  

(0.6,0.6) 4.9595
210−  1.5839

410−  1.48999
210−  4.8309

410−  

(0.7,0.7) 1.0678
110−  9.1925

410−  4.10207
210−  2.0151

410−  

(0.8,0.8) 1.6945
110−  2.9089

310−  8.04526
210−  7.5068

410−  

(0.9,0.9) 1.7523
110−  3.8739

310−  9.42916
210−  3.2029

410−  
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Table 9: A comparison between absolute errors at different points Problem no.2. 

Y 𝛃 = 𝟏. 𝟔 

(odibat&Momani2009)  (Nagy,2017) [39] (Shau&Jena,2024) Present 

(0.1,0.1) 1.0405
510−  2.3806

510−  2.20656
910−  2.0473

610−  

(0.2,0.2) 1.4428
410−  5.2648

510−  1.41781
710−  4.7840

610−  

(0.3,0.3) 6.7118
510−  6.0189

610−  5.88596
610−  5.6735

610−  

(0.4,0.4) 3.0496
310−  6.4444

510−  7.77195
510−  3.5441

510−  

(0.5,0.5) 1.6355
210−  4.0015

510−  5.35288
410−  2.3879

510−  

(0.6,0.6) 4.9596
210−  1.5839

410−  2.37365
310−  2.0032

510−  

(0.7,0.7) 1.0678
110−  9.1925

410−  7.42469
310−  1.1057

410−  

(0.8,0.8) 1.6946
110−  2.9054

310−  1.64619
210−  6.5608

410−  

(0.9,0.9) 1.7525
110−  3.8736

310−  2.2292
210−  5.8774

410−  

Table 10: A comparison between absolute errors at different nodal points Problem no.2. 

Y 𝛃 = 𝟏. 𝟓 

(Yaseen. et al,2021)  (vivas-cortezet al,2024) Present 

0.1 2.2439
410−  3.7668

510−  3.5712
510−  

0.2 4.4182
410−  7.0998

510−  6.1072
510−  

0.3 6.3348
410−  9.6628

510−  9.5518
510−  

0.4 7.6864
410−  1.1253

410−  1.0252
510−  

0.5 8.1775
410−  1.1796

410−  7.0031
510−  

0.6 7.6863
410−  1.1256

410−  5.7518
510−  

0.7 6.3348
410−  9.6629

510−  4.6319
510−  

0.8 4.4182
410−  7.0998

510−  4.3012
510−  

0.9 2.2438
410−  3.7669

510−  3.0984
510−  
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FIGURE 5: Numerical solution of Problem 2 with 𝐌 = 𝟏𝟎𝟎𝟎 at different values of  𝛃. 

 

FIGURE 6: Exact and Approximate solution for Problem 2 with 𝐌 = 𝟏𝟎𝟎𝟎 and different values 

of  𝛃. 
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FIGURE 7: Exact and Numerical solution for Problem 2 with 𝐌 = 𝟏𝟎𝟎𝟎 and different values of  

𝛃. 

 

FIGURE 8: Absolute error for Problem 2 with 𝐌 = 𝟏𝟎𝟎𝟎 and different values of  𝛃. 

8. Conclusion 

In this study, a numerical analysis of the time-fractional Klein–Gordon equation has been carried out using 

the redefined extended cubic B-spline (RECBS) collocation method. The temporal domain is discretized 

using a finite central difference approach, while the spatial domain is approximated through RECBS basis 

functions to build the solution curve. The proposed numerical scheme is proven to be unconditionally 

stable, with the spatial and temporal convergence orders theoretically established as 𝒪(h2)and𝒪(Δt2−α), 

respectively. The numerical results validate the expected convergence rates and confirm the method’s 

accuracy and robustness. Furthermore, comparative assessments with existing techniques such as the 

Variational Iteration Method (VIM) [29] and the Sinc–Chebyshev Collocation Method (SCCM) [39] 

demonstrate that the proposed approach achieves superior performance in terms of accuracy and 

efficiency.  
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