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Abstract 

Application of artificial intelligence (AI), particularly machine learning (ML), 

in medicine has significantly advanced drug discovery. When it comes to 

bridging the knowledge gap between possible therapeutic molecules and 

illness understanding, artificial intelligence is a potent catalyst. The most 

recent developments in artificial intelligence and its use in drug discovery are 

comprehensively summarized in this review. Starting with disease 

identification and covering diagnostics, target identification, screening, and 

lead discovery, different phases of the drug discovery process have been 

briefly discussed. In these phases, artificial intelligence's capacity to examine 

large datasets and identify trends is crucial, improving forecasts and 

productivity in the areas of disease detection, medication development, and 

clinical trial administration. It is made clear how AI may speed up drug 

development through the analysis of large amounts of data, which would cut 

down on the time and expense of introducing new drugs to the market. 

Significance of algorithm instruction, data quality, and ethical issues, 

particularly when managing information about patients in clinical trials is also 

of greater concern. AI has the potential to revolutionize medication 

development by taking these aspects into account, with significant benefits 

for both patients and society. 
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INTRODUCTION 

Each authorized drug can take up to 15 years and cost between $1 and $2 billion, making the traditional 

drug discovery process a difficult and expensive undertaking [1]. The main causes of this are longer 

clinical trial durations and increased attrition rates [2]. Even after progressing to the phase-I clinical trial, 

about 90% of possible treatment candidates fail, despite significant resource investment [3]. 

Pharmaceutical corporations and academic institutions alike view the advancement of a drug candidate to 

a phase-I clinical trial following thorough preclinical optimization as a major milestone [4]. To increase 

the success rate of lead drugs in clinical trials, extensive computational screening and docking have been 

used [5]. Nevertheless, these approaches have disadvantaged such inaccuracy and inefficiency [6]. Deep 

learning (DL) and machine learning (ML) algorithms, which are subsets of artificial intelligence, have 

been recognized as viable solutions to these problems. These artificial intelligence (AI) techniques can 

accurately forecast the features of macro systems at cheap computational costs. As a result, chemical and 

biological experts are increasingly using AI algorithms in the drug discovery process. Drug development 

makes substantial use of machine learning (ML), which uses methods like support vector machines 

(SVM), clustering, random forests (RF), Bayesian networks (BN), and deep learning (DL). Fig. 1 

illustrates the broad classification of ML. Large volumes of data are processed and analyzed by DL models 

in tasks like bioactivity predictions, virtual screening (VS), and clinical imaging [7-8]. BNs forecast a 

patient's reaction to treatment as well as toxicity or bioactivity [9]. Clustering finds correlations or patterns 

in data, while RF models are utilized for feature selection and molecular target identification [10]. SVM 

is a form of supervised learning that is used to categorize data and has applications in toxicity prediction, 

VS, and pharmacological property prediction [11]. 

 

Figure 1: Specific varieties of artificial intelligence. Machine learning can be further classified into three 

primary categories: supervised, unsupervised, and reinforcement learning. These subcategories 

significantly expand the range of drug discovery applications and are essential to the architecture of 

machine learning algorithms. 

The toxicity issues brought on by off-target interactions have been resolved and lead compounds from 

chemical libraries with over 106 million compounds may now be found more quickly thanks to machine 

learning techniques [12]. Additionally, ML-based tools like Alpha Fold have simplified the process of 
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estimating a target protein's three-dimensional structure, which is essential in the drug discovery process. 

Google's DeepMind recently created the AI-based tool Alpha Fold. AI has also been utilized by 

researchers to find new peptides for medicinal uses.AI is being used more and more to calculate the right 

dosage of drugs [13].  

whereas the impediment in protein-protein interactions is predicted using machine and statistical learning 

techniques such as k-nearest neighbor (kNN), Naive Bayesian, SVM, ANN, decision trees (DT), and RF 

[14]. In computer-aided drug design (CADD), which entails selecting a promising therapeutic chemical 

from a pool of compounds, VS is an effective technique. 

 With a filtered dataset, machine learning (ML) may be applied to visual search (VS) using techniques 

like SVM, RF, and DT. Once the correctness of the trained model has been confirmed, it is applied to 

fresh data sets to find compounds with the appropriate activity against a target. Before starting clinical 

trials, the nominated drugs go through a number of bioassays and ADMET (absorption, distribution, 

metabolism, excretion, and toxicity) analyses. VS can be increased, boosted, and even have less false 

positives thanks to machine learning. For LBVS, the algorithms PARASHIFT, HEX, USR, and Shape 

have been developed. Several tools and models have been developed for both LBVS and structure-based 

virtual screening (SBVS) in recent years due to the rise of AI algorithms in the healthcare and 

pharmaceutical industries [15-16]. 

                                        

Figure 2: Schematic representation of the integration of artificial intelligence (AI) into the drug 

development process is presented in this picture. The diagram shows the progression of data collecting, 

which includes molecular structural analysis, experimental text, and clinical sequencing, to the use of AI 

algorithms and neural networks. 

Disease Identification Using AI:  

Artificial intelligence (AI) has demonstrated significant promise in the detection, diagnosis, and treatment 

of infectious diseases and non-communicable diseases (NCDs). AI technologies, such as machine learning 

(ML) and deep learning (DL), enable more accurate diagnostics, early disease detection, and personalized 

treatment plans. By leveraging vast amounts of data, AI can identify high-risk individuals, predict disease 
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spread, and improve patient outcomes. This article reviews key applications of AI in healthcare, 

particularly in the diagnosis of infectious diseases, HIV, diabetes, and diabetic retinopathy [17]. 

AI’s role in infectious disease detection has been transformative, especially in the context of epidemics 

like COVID-19. During the pandemic, AI models were developed to analyze chest X-rays and CT scans 

for pneumonia caused by COVID-19, achieving up to 96% accuracy in categorization. For instance, Narin 

[18]. created a convolutional neural network (CNN)-based diagnostic model that analyzed X-ray images 

of healthy patients, COVID-19 patients, and patients with viral or bacterial pneumonia. These models 

were able to identify specific patterns associated with COVID-19-induced pneumonia, enhancing 

diagnostic accuracy [19]. In addition to COVID-19, AI has also shown potential in diagnosing other 

infectious diseases. For example, Taylor et al. published a study on urinary tract infections (UTIs) where 

six AI algorithms, including support vector machine (SVM) and random forest (RF), were developed to 

diagnose UTIs based on symptoms and laboratory results. The models achieved an area under the curve 

(AUC) of 0.88 and 0.90 for full and reduced datasets, respectively, with XGBoost algorithms 

outperforming other models in terms of accuracy [20]. This demonstrates AI’s ability to reduce diagnostic 

errors and improve the detection of common infections. 

AI has significantly advanced HIV detection, prevention, and counseling. Xiang et al. developed an 

ensemble technique that combined logistic regression (LR), RF, and graph convolutional networks (GCN) 

to identify individuals at high risk for HIV infection [21]. The model showed promising results, with the 

GCN+LR combination achieving 93.4% accuracy and an F1 score of 88.4%, and the GCN+RF 

combination reaching 96.6% accuracy and an F1 score of 94.6% [22]. These models can be used to predict 

individuals at risk for HIV and guide preventative measures. In addition to predictive models, AI has 

enabled the creation of virtual HIV counselors [23]. Heerden et al. developed a conversational agent using 

natural language processing (NLP) to guide users through HIV counseling and testing. This virtual 

assistant encourages users to communicate freely with the system, offering a more anonymous and 

confidential experience compared to previous agents [24]. Human evaluations confirmed the effectiveness 

of this system in improving user engagement and ensuring privacy [25]. 

AI has also made significant contributions to the diagnosis and management of diabetes, particularly in 

the detection of diabetic retinopathy, a common complication of diabetes that can lead to blindness [26]. 

Created a deep CNN model for retinal image analysis, achieving sensitivity of 97.5% and specificity of 

93.4% in detecting diabetic retinopathy [27]. This model has shown superior performance compared to 

human ophthalmologists, offering a more efficient and accurate method for diagnosing this condition [28]. 

In 2018, the U.S. Food and Drug Administration (FDA) approved IDx-DR, the first AI-based medical 

device for the autonomous detection of diabetic retinopathy [29]. The device analyzes retinal images and 

classifies them as either “more than mild diabetic retinopathy detected: refer to an eye care professional” 

or “negative for more than mild diabetic retinopathy; rescreen in 12 months.” This approval marked a 

significant milestone in AI's integration into medical practice [30]. Furthermore, AI has been applied to 

predict type 2 diabetes using speech recognition technology. Developed an interactive AI model that 

functions as a virtual doctor. Using the CMUS phinx open-source technology and the Vox Forge dataset, 

the model can recognize and synthesize speech, allowing it to interact with patients in German [31]. This 
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virtual doctor achieved an area under the curve (AUC) of 0.84 in predicting type-2 diabetes, demonstrating 

the potential of AI in diagnosing and managing chronic diseases [32]. 

AI is revolutionizing healthcare by enhancing the detection, diagnosis, and management of infectious and 

non-communicable diseases. Through the development of predictive models and diagnostic tools, AI is 

improving early disease detection, reducing diagnostic errors, and enabling personalized treatment options 

[33-34]. From HIV and diabetes to sepsis and cancer, AI technologies are transforming medical practice, 

leading to better patient outcomes and more efficient healthcare systems. However, further research and 

regulatory frameworks are needed to address challenges related to data quality, bias, and ethical 

considerations. As AI continues to evolve, it holds immense potential to improve healthcare delivery and 

outcomes worldwide. 

 

Figure 3: An outline of AI-based disease detection. Infectious illness diagnosis, cancer diagnosis, lifestyle 

disorders, and neurodegenerative disease diagnosis are the four categories of AI-based disease 

identification. 

IDENTIFICATION OF THE TARGET  

One of the most important phases in the drug discovery process is target identification. The conventional 

method uses expensive and time-consuming experimental techniques including X ray crystallography and 

high-throughput screening (HTS). However, the application of AI has transformed this subject by making 

it possible to identify possible targets using computational techniques [35]. 

AI-based target identification has the potential to revolutionize the drug discovery process by identifying 

previously overlooked or unknown targets. Using machine learning (ML) algorithms, large datasets from 

various sources can be analyzed to uncover hidden patterns and correlations that traditional methods might 

miss [36]. This approach can lead to the discovery of new biological pathways and potential therapeutic 

targets, thereby transforming drug discovery. Computational techniques allow for the identification of 

targets in a much more efficient manner compared to experimental methods, which are often resource-

intensive, laborious, and time-consuming [37]. 

One major challenge in the past was the difficulty in studying proteins and protein complexes. However, 

in the 1980s, cryo-electron microscopy (cryo-EM) revolutionized the field.Cryo-ET, for example, has 

been particularly useful for studying protein complexes in their natural environments [38]. Using 



KJMR VOL.02 NO. 07 (2025) REVOLUTIONIZING DRUG …… 

   

pg. 158 
 

computational algorithms, images from cryo-EM can be combined to form 3D representations of the 

protein structures, providing deeper insights into their functions. 

In proteomics, mass spectrometry (MS) has been widely used to analyze proteins [39]. One key challenge 

in proteomics is predicting how proteases, such as trypsin, will cleave proteins during digestion [40]. To 

improve this prediction, Deep Digest, a deep learning (DL)-based algorithm, was developed to forecast 

the proteolytic cleavage sites of eight different protease enzymes. This tool was trained using a vast dataset 

of samples from various species and has demonstrated significant predictive power in identifying cleavage 

sites, thereby improving the accuracy of protein identification [41]. 

Advancements in computational tools, high-performance computing, and ML algorithms have paved the 

way for new drug discovery methods. A significant hurdle in drug discovery is the need to predict the 3D 

structure of proteins, particularly when experimental methods, like X-ray diffraction, are limited to 

crystallizable materials [42]. For many years, computational methods were used to predict protein 

structures in the absence of experimental data. One notable advancement in this area is the development 

of Alpha Fold, a deep learning algorithm created by DeepMind [43]. Alpha Fold is able to predict the 3D 

structure of proteins from their amino acid sequences with high accuracy, and its success is considered a 

breakthrough in drug discovery. By solving the structures of approximately 200 million proteins, including 

98.5% of the human proteome, Alpha Fold has opened new avenues for drug development. In 2021, the 

Alpha Fold database was made publicly available, providing detailed 3D structures of the human 

proteome. However, Alpha Fold has limitations, such as its inability to account for the impact of mutations 

on protein folding and its lack of consideration for the dynamic nature of proteins, which can exist in 

multiple states [44-45]. 

In addition to Alpha Fold, other methods, like ESMFold and EMBER3D, have emerged as promising 

tools for predicting protein structures. ESMFold, created by Lin 2022, utilizes a masked transformer 

protein language model that understands biological features. ESM Fold outperforms Alpha Fold in terms 

of prediction speed and has shown significant accuracy for structures predicted with high confidence [46]. 

It is able to predict over 617 million structures from metagenomic datasets, with millions of them predicted 

with high confidence. EMBER3D, although less accurate than Alpha Fold, is known for its faster 

processing speed. It also performs better than Alpha Fold in predicting how single amino acid mutations 

affect protein structure. EMBER3D’s predictions align closely with experimental results, making it a 

valuable tool for studying mutations and their impact on protein function [47]. 

A notable development in this area is the Passer tool, created by Tian. Passer uses an ensemble learning 

approach to predict allosteric sites on proteins. It combines XGBoost and graph convolutional networks 

(GCN) to enhance prediction accuracy [48]. With an accuracy of 0.97, Passer is able to identify allosteric 

sites with high precision, making it an invaluable tool in drug discovery. This method is able to identify 

potential targets for therapeutic intervention by studying the structure and physical properties of protein 

pockets [49]. 

Finally, BANDIT, a Bayesian machine learning platform for drug target prediction, integrates data from 

various sources to identify potential drug targets [50]. It uses over 20 million data points, including 

bioassay results and post-treatment reactions, to make accurate predictions. BANDIT has been 

successfully tested on thousands of molecules and has identified promising new targets for cancer therapy 

[51]. This platform holds significant promise for accelerating drug development by prioritizing targets 

with unique mechanisms of action [52]. 
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Figure 4: shows a summary of the AI-based method for locating and assessing tiny compounds. First 

comes target acquisition, then protein 3D structural validation with ProQ and SolvX, and finally homology 

modeling. Programs such as Modeller and AlphaFold2 are used to model protein sequences. The next 

stage is pocket exploration, which finds orthosteric and allosteric binding sites across the protein proteome 

using both static and dynamic structures. 

AI-ENABLED VIRTUAL SCREENING IN DRUG DISCOVERY: OPPORTUNITIES AND 

CHALLENGES 

In the first stage of drug discovery, many compounds are typically computationally screened to find those 

with the desired cellular or biochemical effects; new techniques are continually being developed to speed 

up, improve the efficiency, and reduce the cost of this process. Primary "hit" compounds are identified by 

a positive response in the first round of screening in a biochemical assay; further screening is then 

conducted to determine whether the hit compounds' physicochemical and pharmacological properties are 

suitable. With any luck, a lead may eventually receive drug approval, a process that could take 12 to 15 

years [53]. Drug development is still a costly and time-consuming procedure, even with major 

improvements in medicinal chemistry and drug discovery technology. In order to find hit compounds that 

may be improved to lead compounds with desired attributes including higher potency, solubility, and 

reduced toxicity and off-target effects, hundreds of compounds are subjected to in vitro tests as part of the 

current standard procedure, which is known as HTS [54]. 

Thousands of compounds must be synthesized and tested as part of the traditional drug discovery process, 

which is expensive and time-consuming. It also requires a lot of protein supply and well-established 

laboratory techniques for bioactivity testing [55]. On the other hand, VS has become a viable and 

affordable method for screening millions of commercially accessible chemicals and identifying those that 

should be further tested, synthesized, or purchased techniques are divided into two groups: ligand-based 

techniques and structure-based techniques [56]. But even with the potential advantages, developing a 

single medication still takes an average of 10 to 15 years and more than $2 billion [57].  

STRUCTURE-BASED METHODS 

Structure-based virtual screening (SBVS) relies heavily on obtaining structural data of protein complexes. 

Molecular docking, a key technique in SBVS, estimates the ligand's binding affinity by generating various 

binding poses for the ligand in the protein’s binding site. These poses are ranked using scoring functions 

(SFs), which have seen significant advancements with the introduction of machine learning (ML) and 

deep learning (DL)-based SFs. Unlike SBVS, ligand-based virtual screening (LBVS) methods such as 



KJMR VOL.02 NO. 07 (2025) REVOLUTIONIZING DRUG …… 

   

pg. 160 
 

quantitative structure-activity relationship (QSAR) modeling, molecular similarity searches, and ligand-

based pharmacophore approaches require only the ligand information and are well-established techniques 

for drug discovery [58-59]. 

To improve the efficiency of the SBVS process, AI-enabled tools have been developed. One notable 

advancement is Deep Docking, an open-source protocol designed by Gentile, which accelerates SBVS by 

100-fold. Deep Docking integrates both molecular docking and machine learning to screen large molecule 

libraries [60]. Initially, a small subset of the library undergoes molecular docking, and the results are used 

by a deep neural network (DNN) to infer the ranking of the remaining molecules [61]. This method allows 

the efficient screening of billions of compounds while minimizing computational costs. Deep Docking 

can be paired with various docking software, including Glide, Autodock-GPU, and OpenEye’s FRED. 

Despite its advantages, the approach faces challenges, such as the reliance on the availability of graphics 

processing units (GPUs) [62]. 

Several machine learning approaches are commonly employed for virtual screening (VS), including 

artificial neural networks (ANNs), k-nearest neighbors (kNN), support vector machines (SVMs), random 

forests (RFs), and Naive Bayes (NB) classifiers. For example, KNN is simple to build and can be used for 

multi-task learning (MTL), whereas NB classifiers are particularly effective for identifying scaffold pieces 

beneficial for drug discovery. Additionally random forests can be parallelized and boosted, enhancing 

performance. Combining multiple machine learning models in an ensemble is often recommended to 

improve prediction accuracy [63]. 

In ligand-based virtual screening (LBVS), NB classifiers are frequently used due to their strong 

performance. demonstrated the effectiveness of NB classifiers in identifying inhibitors for methicillin-

resistant Staphylococcus aureus. They also developed an improved ensemble model incorporating both 

NB and SVMs, which identified potent neuraminidase inhibitors [64]. 

SVMs, first introduced by Vapnik, are highly effective in virtual screening when supervised learning is 

applied. SVMs create feature vectors for input data, mapping them into a higher-dimensional space for 

classification. Chandra and colleagues demonstrated the power of SVMs in identifying inhibitors for 

PTP1B, a potential target for Type 2 diabetes. Their SVM model successfully identified five inhibitory 

compounds, two of which showed significant activity in vitro. Similarly, Deshmukh et al. used an SVM 

model to identify both known and novel inhibitors of FEN1, a target involved in DNA repair. Furthermore, 

SVM models with regression have proven to be more effective than RF models in predicting a compound’s 

skin permeability [65]. 

AI techniques, especially those employing machine learning algorithms, have revolutionized virtual 

screening methods for drug discovery. By combining structure-based and ligand-based approaches with 

AI tools, researchers can significantly improve the efficiency and accuracy of the drug discovery process 

[66]. 

LIGAND-BASED VIRTUAL SCREENING (LBVS) 

Ligand-based virtual screening (LBVS) forms a crucial part of the drug discovery process by identifying 

compounds that share structural similarities with known active ligands. One of the main techniques within 

LBVS is pharmacophore-based virtual screening. This approach involves creating two-dimensional 

fingerprints of active ligands based on chemical descriptors, such as hydrogen-bond donors, hydrogen-

bond acceptors, and aromatic rings . By utilizing these chemical descriptors, LBVS can screen large 

databases effectively, even without structural data of the target protein [67]. 
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In addition to fingerprint-based approaches, machine learning (ML) plays a significant role in LBVS. ML 

models are employed to explore the relationship between the biological activity of ligands and their 

molecular or atomic descriptors. For example, Quantitative Structure-Activity Relationship (QSAR) is an 

area where ML is frequently used to predict the biological activity of compounds based on their molecular 

features demonstrated this in their study of hybrid inhibitors for cancer treatment. The study achieved area 

under the curve (AUC) values of 0.98 and 0.94 for the prediction of inhibitors targeting BCR-ABL 

showing the potential of these hybrid compounds in cancer therapy [68]. In another example, 

Dhamodharan. developed three AI models to predict dual inhibitors for acetylcholinesterase and beta-

secretase 1 (BACE1) in Alzheimer's disease, with the artificial neural network (ANN) model providing 

the highest prediction accuracy. Furthermore, a significant development in LBVS is the introduction of 

AtomNet, a convolutional neural network (CNN) model created by Atomwise, Inc. AtomNet departs from 

traditional LBVS techniques by using a structure-based approach to predict ligand binding. This model 

utilizes convolutional layers to recognize binding features from chemical functions, achieving AUC values 

greater than 0.74 across various datasets. AtomNet's ability to identify binding features greatly improves 

the accuracy of virtual screening [69]. 

The complexity of diseases like Alzheimer's has led to the use of polypharmacology in drug discovery. 

Polypharmacology focuses on designing multi-target directed ligands (MTDLs) that can modulate 

multiple targets associated with complex diseases. Fang et al. used LBVS methods, including Naïve Bayes 

and recursive partitioning classifiers, to identify drugs binding to multiple targets involved in Alzheimer's 

disease. These methods provided insight into potential multi-target inhibitors and contributed to a better 

understanding of polypharmacology in AD drug discovery [70]. 

Recent advancements in computational tools have greatly enhanced the efficiency of virtual screening. 

Supercomputing platforms such as Open Eye, Giga Docking and Virtual Flow have been employed to 

dock massive chemical libraries, screening billions of molecules within a short time frame using thousands 

of CPUs/GPUs. However, these platforms require significant computational resources, making Deep 

Docking (DD) a more desirable alternative for large-scale virtual screening. Deep Docking uses less 

computational power compared to other docking methods and speeds up the screening process by focusing 

on compounds with the highest docking scores, making it an effective tool for high-throughput screening 

of large molecule libraries. Drug repurposing is another emerging field that benefits from these advanced 

screening techniques. By identifying new therapeutic uses for existing drugs, drug repurposing can bypass 

pre-clinical research and lead optimization, accelerating the drug development process. A novel method 

for predicting the molecular targets of approved drugs was developed by Reker and colleagues. Their self-

organizing map-based prediction of drug equivalence relationships (Spider) has shown impressive 

predictive power, with ROC values between 0.86 and 0.93 in cross-validation studies. 

Prediction of Drug Toxicity with AI 

One essential step in lowering the failure rate and increasing the effectiveness of drug discovery is 

predicting drug toxicity during the preclinical phases. The use of crude models and small datasets in 

traditional drug toxicity prediction techniques limits their applicability. However, by utilizing vast and 

varied data sources biological processes and clinical data, AI-based methods have surfaced as viable 

substitutes. AI-based methods can increase the precision and effectiveness of forecasting the potentially 

harmful effects of novel compounds by employing machine learning (ML) algorithms. This can assist to 

lower the risks involved in clinical trials, lower the expenses of medication development, and ultimately 

improve patient outcomes [71]. 

Recently, there has been an increase in the application of AI-based computer models to predict medication 

toxicity. Numerous researches have used machine learning (ML) and deep learning (DL) methods, 
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including neural networks, to evaluate large drug and toxicity data sets in order to find possible hazardous 

effects during drug development. These models can expedite the discovery of novel medications by 

detecting toxicity early on. AI-based toxicity prediction models can also identify novel therapeutic targets 

and toxicity pathways, as well as rank drugs for testing. Numerous reviews have addressed the prediction 

of AI toxicity. Numerous toxicity features in the broad field of AI-based toxicity prediction make a single 

review difficult [72]. 

CARDIAC SIDE EFFECT PREDICTION 

Machine learning (ML)-based techniques are widely used to predict hERG toxicity, which is critical for 

assessing cardiac side effects in drug development. Several ML models, including Random Forest (RF), 

Support Vector Machine (SVM), Naive Bayes (NB), Support Vector Regression (SVR), k-Nearest 

Neighbors (kNN), Decision Trees (DT), Gradient Boosting (GB), Partial Least Squares (PLS), and 

extreme Gradient Boosting (XGB), are commonly applied for this purpose. 

Venkatraman developed an RF model based on Extended Connectivity Fingerprint (ECFP6) descriptors 

to predict hERG toxicity. This model used 7,889 compounds with known experimental hERG blocking 

bioactivities from four assays. Compounds with a blocking value of ≤10 μM were considered positive, 

totaling 4,355 compounds, while 3,534 compounds were negative. The RF model, which builds multiple 

decision trees, achieved an accuracy of 80% and an ROC-AUC of 88%, demonstrating robust prediction 

performance for hERG toxicity. Other studies have also demonstrated the power of RF models utilized 

RF for hERG prediction with high accuracy. In a different approach, Ogura et al. used 72 NSGA-II-

selected descriptors combined with ECFP_4 structural fingerprints to build an SVM model, achieving a 

kappa statistic of 0.733 and an accuracy of 98.4%. This model outperformed others in predicting hERG 

toxicity [73]. 

Konda developed consensus models using RF, Sequential Minimal Optimization (SMO), and Multilayer 

Perceptron (MLP), incorporating 2D descriptors. Their consensus model outperformed others, reaching 

an accuracy of 92%. More advanced models have also been introduced, such as Directed Message-Passing 

Neural Networks (DMPNN) created a DMPNN model using moe206 descriptors, achieving an accuracy 

of 80%, surpassing other models. Furthermore, Zhang developed HergSPred, which achieved an 

impressive accuracy of 98.3%. Other notable models include Deep Hit, created by Ryu et al., which 

excelled in terms of accuracy, Matthews Correlation Coefficient (MCC), and sensitivity (SE), and 

Interpretable-ADMET by Wei which showed a high accuracy of 91.9% on 8,672 chemicals. ADMET Lab 

2.0 [74]. 

LD50 PREDICTION 

Toxicology research frequently uses the median lethal dose (LD50) to assess a substance's toxicity. LD50 

represents the dose of a chemical that causes death in 50% of a population within a set timeframe, typically 

in animal models. It is an essential measure in drug screening. However, due to ethical concerns and 

variability between species, conventional LD50 testing is being phased out in favor of in silico prediction 

models and cell culture-based toxicity assays. These alternative methods aim to reduce animal testing and 

provide more accurate, efficient ways to predict toxicity across different species. One common approach 

to predicting LD50 involves the use of binary classification models. Substances are classified into two 

categories: hazardous (LD50 = 2,000 mg/kg) or benign (LD50 = 50 mg/kg). Several computational tools, 

such as FP-ADMET and Interpretable-ADMET, have incorporated LD50 prediction algorithms to aid in 

toxicity assessments. Ballabio developed binary fingerprint models using Naïve Bayes (NB), N-Nearest 

Neighbors, and Extended Connectivity to predict LD50 for 8,992 compounds. Their model achieved 84% 

sensitivity and 81% specificity, demonstrating its utility in toxicity prediction. Further advancements in 
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LD50 prediction have involved machine learning (ML) and deep learning (DL) models [93]. For example, 

Gadaleta utilized Random Forest (RF), regression techniques, and other ML methods to create a QSAR 

model for 8,448 chemicals. Their integrated approach achieved over 70% accuracy for multiclass 

endpoints and 80% for binary endpoints, with an RMSE of 0.477%. In another study, created a DL 

consensus model combining RF, Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), 

and Graph Convolutional Networks (GCNN) for 80,081 chemicals, achieving an RMSE of 0.65 and R2 

of 0.5[75]. 

These advancements in computational methods, such as RF, DNN, and CNN, have significantly improved 

the prediction of LD50 values, allowing for safer and more efficient drug development while minimizing 

the need for animal testing. 

AI-BASED MODELING FOR PERSONALIZED DRUG DOSING 

Traditionally, clinical practice has followed a "one-size-fits-all" approach to therapy, where drugs are 

prescribed uniformly. However, individual variations in genetic profiles can lead to differences in drug 

metabolism, causing treatments to be more effective in some patients and less so, or even harmful, in 

others. These variations highlight the importance of precision medicine, a more personalized approach to 

treatment based on a patient’s genetic makeup. The goal is to minimize side effects and optimize treatment 

outcomes by tailoring treatments and dosages to individual patients or groups with similar genetic profiles 

[76]. 

Artificial intelligence (AI) has significantly advanced the field of precision medicine. For instance, 

CURATE.AI, an AI-driven platform, uses patient data to predict treatment outcomes and recommend 

optimal dosages. It creates a personalized patient profile that is adjusted dynamically as the patient’s 

disease progresses or recedes. This approach is particularly beneficial as drug regimens become more 

complex, often involving combination therapies that target multiple aspects of a disease, such as cancer.AI 

applications have also been used in oncology to predict patient responses to treatments. Kureshi developed 

an AI decision tree to predict treatment effectiveness for non-small cell lung cancer (NSCLC) patients, 

achieving an accuracy of 76.6%. AI-based tools like IBM Watson for Oncology have further enhanced 

personalized treatment plans, drawing on vast databases of clinical trials and medical literature to make 

precise treatment recommendations [77]. 

THE ROLE OF AI IN RARE DISEASE RESEARCH 

Nearly 10% of the US population suffers from rare diseases (RDs), making diagnosis and treatment 

challenging due to their complexity and rarity. Delays in diagnosis, which can take up to seven years, lead 

to significant treatment setbacks. AI offers potential solutions for improving RD diagnosis and therapy. 

Techniques like Naive Bayes (NB), Random Forest (RF), XGBoost, Convolutional Neural Networks 

(CNN), and Autoencoders (AE) are being employed to detect and treat rare diseases. For example, 

developed a deep learning model using InceptionV3 CNN to identify tubers in MRI images, achieving 

95% accuracy in diagnosing a rare neurological disorder. Similarly, Founta created a classifier based on 

XGBoost and RF for diagnosing Amyotrophic Lateral Sclerosis (ALS), achieving an accuracy of 

88.89%.AI-based PET scans also show promise in early RD detection [78]. However, ethical, legal, and 

societal implications of AI in healthcare need careful consideration. Collaborations with patient advocacy 

groups and diverse datasets are essential to ensure the safety, efficacy, and relevance of AI-based medical 

devices [79]. 
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CONCLUSION 

AI technology has significantly impacted drug design, enhancing the efficiency and accuracy of various 

stages in drug development, from disease diagnosis to post-market surveillance. In early disease 

prediction, AI models can analyze patient data and predict potential diseases, aiding in personalized 

medicine and optimizing drug dosages for individual needs. Furthermore, AI accelerates target and lead 

identification by predicting protein structures and assessing the biological activities of small molecules, 

reducing the reliance on experimental validation. 

Clinical trials benefit from AI by assisting in patient stratification, recruitment, and monitoring, ensuring 

more effective trials with fewer failures. It also aids in regulatory approval processes, including with the 

FDA, and contributes to pharmacovigilance, reducing the chances of adverse drug reactions post-market. 

AI's role in drug development has led to faster discoveries, cost reductions, and minimized reliance on 

animal testing, addressing ethical concerns. However challenges remain, such as ensuring model explain 

ability, maintaining high-quality training data, and preventing bias and overfitting. AI’s ethical 

implications, particularly concerning data privacy, also need careful attention. Despite these challenges, 

the integration of AI into healthcare is progressing, with emerging fields like the development of virtual 

human models to simulate molecular interactions, predicting drug behaviors and side effects with 

unprecedented accuracy. This approach could revolutionize drug discovery and precision medicine, 

offering new possibilities for therapeutic safety and efficacy prediction. 
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