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Abstract 
Instance selection is a crucial preprocessing step aimed at reducing the computational 

complexity of machine learning models, particularly when integrated with feature selection 

and dimensionality reduction techniques. This process enhances the overall prediction 

accuracy by selecting the most representative instances and removing redundant or irrelevant 

data points. While instance selection has been widely studied, the application of ensemble 

methods to instance selection remains underexplored in existing literature. Ensemble 

methods, known for their ability to combine multiple models to improve predictive 

performance, offer a promising avenue for refining instance selection strategies. In this study, 

we explore the efficacy of four ensemble strategies voting, feature bagging, Additive Noise, 

and Bagging when applied to a diverse set of nine instance selection algorithms: CNN, ENN, 

GE, IB2, IB3, All-KNN, RMHC, MC, and RENN. The goal is to determine how well these 

ensemble methods can enhance the performance of individual instance selection algorithms 

in terms of accuracy and compression efficiency. The experimental evaluation is conducted 

in three distinct phases. In the first phase, we focus on assessing the accuracy and data 

compression capabilities of each instance selection method on a specific dataset. This phase 

establishes a baseline performance metric for the instance selection algorithms and provides 

an understanding of how well they generalize across different types of data. The second phase 

involves evaluating the performance of the four ensemble strategies across six different 

datasets. This phase aims to assess the robustness of ensemble methods in improving the 

accuracy of instance selection algorithms, especially when dealing with diverse data 

characteristics. The ensemble methods are expected to offer a more stable and generalized 

solution compared to individual instance selection techniques, potentially leading to 

improved prediction results. In the final phase, we conduct a comparative analysis of the 

compression effectiveness of the nine instance selection algorithms, both individually and 

within the ensemble frameworks, across the six datasets. By comparing the compression 

ratios achieved by each method, we aim to identify the most efficient instance selection 

techniques that retain key information while reducing the size of the data for subsequent 

modeling. This analysis is critical for understanding the trade-off between computational 

efficiency and the preservation of valuable data. 

 Keywords: 

Instance Selection, Repeated Edited Nearest Neighbor, Clonal Selection 

Algorithm, Object Selection by clustering, Back Propagation.  
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1. Introduction 

The typical data mining process comprises four main stages: data collection, data preprocessing, predictive 

modeling, and post-processing. Instance Selection (IS) plays a crucial role during the data preparation 

stage by helping to identify the most relevant training data. Through IS techniques, the training dataset 

can be effectively refined by filtering out redundant or noisy instances. This filtering not only enhances 

computational efficiency but also boosts model accuracy. IS algorithms act as intelligent data filters, 

determining which examples should be retained or discarded from the dataset. While predictive models 

are constructed in the third phase, their success heavily depends on the quality of the training data. 

Although ensemble learning has been widely explored, only limited research has addressed the use of 

ensembles specifically in IS. This study aims to evaluate four ensemble techniques—Bagging, Feature 

Bagging, Voting, and Additive Noise adapted for instance selection. 

The concept of Artificial Intelligence (AI) was first introduced in 1956. Since then, it has evolved into a 

vital part of modern technology, playing a significant role in our everyday lives. AI refers to the simulation 

of human intelligence in machines that are designed to think, learn, and act like humans. It encompasses 

systems and devices that can perform tasks typically requiring human cognition, such as learning from 

experience, reasoning, and problem-solving. In simple terms, AI enables machines and software to process 

information and make decisions in a manner similar to human thinking. These systems can improve their 

performance over time through experience and data input. Common applications of AI include self-driving 

vehicles and computer programs capable of playing strategic games like chess both of which rely heavily 

on data analysis and processing. 

 Supervised learning is a machine learning approach focused on discovering patterns and relationships 

between input features and a target variable. The target variable can be either numerical or categorical. 

When it is numerical, the task is referred to as regression, and when it is categorical, it is known as 

classification. The target variable typically represents individual values or classes. The outcome of 

supervised learning is a model a structure formed by the algorithm during training using labeled datasets. 

This process enables the model to learn associations between the input features and the output variable. 

Lazy learning algorithms do not build a predictive model during the training phase. Instead, they store the 

training data and delay computation until a prediction request is made. This approach has both advantages 

and drawbacks. Lazy learners require significant storage to maintain the entire dataset and tend to be 

slower at prediction time. However, they offer very fast training and can adapt quickly by simply adding 

new instances to the database, which is especially useful in dynamic or changing environments. They also 

provide good local approximations due to their reliance on raw data during prediction. 

Eager learning algorithms, in contrast, construct a predictive model during the training phase. These 

models such as decision trees, neural networks, or support vector machines capture the relationship 

between input features and target values. Once trained, the model can be used to quickly make predictions 

for new instances. Eager learners require more time during training but benefit from efficient predictions 

and reduced storage needs, as only the trained model (not the entire dataset) must be retained.  
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1.1. Problem Statement 

Instance Selection is a vital data preprocessing technique widely applicable across various machine 

learning tasks. Given the massive size of modern datasets, IS methods help reduce data volume, making 

it more manageable and less resource-intensive for training algorithms. By eliminating irrelevant, noisy, 

or redundant instances before model training, IS techniques can enhance the efficiency and accuracy of 

classification models. Despite their importance, there remains a gap in understanding how ensemble 

strategies can further improve the performance of IS methods. 

The primary objective of IS techniques is to reduce the size of the training dataset—a process referred to 

as compression without compromising prediction accuracy. A secondary but equally important goal is to 

enhance model performance by removing outliers and noisy data points. Ensemble learning combines 

multiple models or techniques to improve overall prediction quality. When applied to IS, ensemble 

methods iterate over different subsets of the data, creating diverse selections and thus enhancing 

robustness and accuracy. This research focuses on comparing various IS ensemble approaches. Initially, 

an overview of IS strategies and recent advancements in ensemble methods for predictive modeling is 

presented. The study is divided into three key parts: 

1. Analyzing the trade-off between accuracy and compression; 

2. Comparing the accuracy of four ensemble methods adapted to IS techniques across multiple datasets; 

3. Evaluating the compression ratios achieved with and without the use of ensemble techniques. 

2. Related work 

Wrapper and filter approaches constitute the primary categories of sample selection techniques. To 

address the challenges associated with instance selection (IS), numerous methods have been introduced. 

A common foundation for many wrapper strategies is the K-Nearest Neighbors (KNN) classifier. 

Condensed Nearest Neighbor (CNN) [3] is one of the earliest methods introduced. It is a basic incremental 

IS strategy that aims to reduce the original dataset T. Initially, one instance p is randomly picked from 

each class Y to form the subset S. Then, each instance in T is classified using S. If p is misclassified, it is 

added to S. However, this can result in noisy instances remaining due to incorrect classification by their 

neighbors. 

A generalized form of CNN, known as GCNN, was proposed in [4]. It utilizes a stronger absorption 

criterion compared to the original version. Absorption is determined by the nearest neighbor and other 

instances belonging to different classes. Initially, a y-prototype is selected at random for each class y. 

After verifying all samples, if they are strongly absorbed, the process ends. If any y-samples remain 

unabsorbed, a new y-prototype is randomly selected for that label. If none are available, the algorithm 

proceeds without changes. Consequently, S comprises instances that represent T. GCNN tends to 

outperform other instance-based data reduction techniques in terms of accuracy. 

Edited Nearest Neighbor (ENN) [8] is another classical IS method. It operates by eliminating noisy 
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instances based on their class agreement with their KNN neighbors. If an instance in T belongs to a 

different class than the majority of its KNN, it is excluded. The Repeated ENN variant applies the ENN 

method iteratively until all instances conform to the majority class of their k-nearest neighbors. All k-NN 

[5] is an alternative to ENN, where a loop from i = 1 to k identifies and removes misclassified instances 

by KNN. Multi-edit, another edited KNN approach by [9], begins by randomly partitioning the data into 

n subsets. Each partition is trained using a 1-NN classifier, and neighbors are found in adjacent partitions. 

This continues for t iterations until no further instances are eliminated. 

Selected Nearest Neighbor (SNN) [10] is a modified version of CNN, which forms a subset S such that 

each element in S is more similar to another instance from the same class in S than to any instance in the 

total set TS. Here, TS is classified exactly by 1NN. Instance-based learning methods IB2 and IB3 were 

introduced in [11]. IB2 incrementally selects correctly classified instances. IB3 extends IB2 by tracking 

classification history, ensuring the removal of an instance does not impact classification accuracy. DROP 

through DROP5 are additional KNN variants discussed by [7]. DROP1 eliminates an instance p if its 

associates in TS can be correctly classified without it. DROP2 improves this by scanning the full training 

set. DROP3 and DROP4 incorporate ENN to filter noise prior to applying DROP2. DROP5 adds the 

removal of nearest enemies to smooth decision boundaries. Author [7] also introduced Iterative Case 

Filtering (ICF), using Reachable(p) and Coverage(p) sets, representing neighbors and associates. ICF 

removes p if the size of Reachable is greater than Coverage. It incorporates ENN to aid the process. A 

similar method, C-Pruner, was proposed by [12], using a spin order to filter instances from the same class. 

If |Coverage| < |Reachable|, the instance is considered noisy; if reachable instances correctly classify p, it 

is deemed irrelevant. Support Vector Machines (SVMs) were applied for instance selection by [13]. Since 

only support vectors are used to define decision boundaries, they inherently function as selected instances. 

[14] combined SVMs with DROP2 in a wrapper strategy, while SV-KNN Clustering uses SVM for 

selection followed by K-means clustering on the resulting support vectors. Evolutionary algorithms (EA) 

were adopted in IS by [15][13], drawing on biological evolution principles [14]. Chromosomes 

representing instance subsets are evaluated by fitness functions, generally involving a classifier. 

Chromosomes evolve over multiple generations through crossover and mutation operations. The meme 

algorithm, introduced by [18], merges EA with local search in a single evolutionary cycle. Chromosomes 

encoded as binary strings are refined for both precision and subset size reduction, improving the 

evolutionary process. 

Table 1 Summary of IS Techniques 

Technique Type Base 

CNN W Misclassification 

GCNN W 
Misclassification, 

Absorption 

ALL-KNN W Misclassification 
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SNN W Misclassification 

SV-KNN W SVM, KNN 

ENN W Misclassification 

ICF W Reachable, Coverage 

EA W Natural Evaluation 

TS W Tabu Search 

CSA W Local Search 

MA W Evolutionary 

IB W Misclassification 

Multiedit W Misclassification 

Drop W Associate 

GA W Chromosomes 

GCM F Clustering 

NSB F Clustering 

OSC F 
Interior instances 

,clustering, border 

CLU F 
Interior instances, 

clustering. 

PSR F Instance relevance 

WP F Instance weight 

POP F 
Border Instances, 

weakness 
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3. Methods and materials 

This section outlines the methodology adopted in our research. The accompanying figure illustrates the 

specific methods and procedures implemented throughout the study. 

 

Figure 1 Flow of Experiment 

The figure depicts how the experimental work is carried out. We retrieve the dataset and normalized it. 

Then we used cross validation for training and testing the dataset. In the training portion, we used the 

ensemble classifier with the IS technique and classify the compressed dataset using a predictive model. In 

the training portion, compression and accuracy of the dataset will measure. The chapter continues with a 

detailed description of each stage. 

3.1. Normalization 

Normalization scales values to fit into a defined range. It's important to change the value range while 

engaging with the properties of many scales and units. For a proper comparison, all characteristics be 

scaled equally by using the Euclidean distance. Normalization is important for comparing properties of 

different sizes. Normalization can be accomplished in four ways.  

• Statistical normalizing is another term for z transformation. The average of the data is subtracted from 

all values, after that the standard deviation is divide, the data distribution therefore data has a zero 

mean and a one variance. It maintains the basic range of the data and is fewer affected by extremes. 

• All Attribute values are normalized to a set of values called a range. As a result, the highest value is 

max, and the lowest number is min. All other numbers have been scaled to fit inside the specified 
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range. Outliers can impact this strategy since the boundaries shift towards them. However, because 

this approach preserves the original data point distribution, it may also be helpful to anonymize data. 

• This normalization is defined as the percentage of each feature value to the whole attribute. This 

indicates that the entire sum of the feature values is divided by each value. Both positive and negative, 

missing values too, are not included in the total. Negative numbers can be handled otherwise, when 

used as absolute values, they will produce a miscalculation. 

• The interquartile range is used to normalize data. The difference among the twenty-five to seventy-

five percentiles is calculated using the interquartile range, commonly known as the high and low 

quartiles. They are determined by sorting the data first and then choosing the data that detach the top 

twenty five percent of instances from the rest. The sorted data is divided in half by the value of fifty 

percent.  IQR is the outcome of the interquartile range normalization computation. The range of IQR 

is in the interval between the center of fifty percent of the data, hence outliers have less of an impact 

using this normalization procedure. In this approach, unbounded values as well as missing values can 

be disregarded. In addition, if no limited values can be identified, the attribute will be disregarded. 

3.2. Cross Validation 

Cross-validation involves two main stages: one dedicated to training and the other to testing. In the training 

phase, a model is developed using a specific subset of the data, while in the testing phase, the model’s 

performance is assessed using previously unseen data. The dataset is divided into k equally sized subsets. 

One of these subsets is used as the test set, and the remaining k–1 subset is used for training. This process 

is repeated k times, with each subset serving as the test set exactly once. To produce a final performance 

estimate, the results from all k iterations are aggregated commonly by calculating the median or mean of 

the performance scores. The parameter k, representing the number of folds, is adjustable based on 

experimental requirements. Evaluating a model on independent test data offers a more reliable indication 

of its generalization ability. It also helps in identifying overfitting where the model performs well on 

training data but poorly on unseen data. Consequently, a model that performs effectively on test data is 

more likely to maintain accuracy when applied to new datasets. 

 

Iteration Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

1st Test Train Train Train Train 

2nd  xTrain Test Train Train Train 

3rd  Train Train Test Train Train 

Training 

Data 



KJMR VOL.02 NO. 07 (2025) ENHANCING INSTANCE … 

   

pg. 173 
 

Figure 2 Illustration of 5-Fold Cross Validation 

3.2.1. Sampling Methods 

Different sampling strategies can be used to generate subsets for cross-validation: 

• Linear Sampling: Divides the dataset while preserving the original order of examples. Subsets are 

composed of consecutive entries. 

• Shuffled Sampling: Randomly generates subsets by randomly selecting instances from the dataset. 

• Stratified Sampling: Ensures that each subset maintains the same class distribution as the full dataset. 

For example, in a binary classification task, it maintains approximately equal proportions of each class 

in all subsets. 

3.3. Ensemble of Instance Selection (IS) 

The use of IS within ensembles has been explored through various approaches. In [5], the initial concept 

involved aggregating outputs from ENN models over several k-values. Another strategy, as outlined in 

[41], applied boosting to enhance instance selection. An indirect approach introduced by [42] utilized an 

ensemble of classifiers constructed through diverse IS outputs, maintaining diversity by varying the 

datasets resulting from IS. A democratic voting approach to IS was also proposed by [42], where 

frequently misclassified instances are flagged for removal. In addition, [43] implemented Bagging and 

Feature Bagging as ensemble strategies for example selection. A comprehensive comparison was 

conducted by [44], examining methods such as MultiBoost, ReweightBoost, FloatBoost, and AdaBoost. 

This work treated IS as a binary classification problem each instance is labeled as either retained or 

discarded based on an IS-specific label. It’s important to note that IS ensembles differ from classifier 

ensembles. In IS ensembles, we often lack the ground truth about which instances should be retained. 

Therefore, IS labels are approximated and can only be inferred post-classification. This constraint limits 

the use of supervised ensemble combiners, prompting the use of methods like Bagging and Feature 

Bagging, which operate without requiring ground truth labels. In this study, four ensemble approaches 

were evaluated for their effectiveness in the IS context. The goal was to enhance instance selection by 

leveraging ensemble strategies while maintaining or improving classification accuracy. 

4th  Train Train Train Test Train 

5th  Train Train Train Train Test 
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Figure 3 Ensemble of instance selection 

Algorithm 1 Algorithm of Ensemble Learning 

Input: Training set D= {(m1,n1),….,(mn,nn) 

Number of iterations Z 

Threshold t 

Output: Subset of D (selected instance) D ⊆ S 

Initialize: 

  IS = Instance Selection algorithm 

  S = sample instances from D 

 

For i = 1 to z do: 

    A = Apply Ensemble Learning on D and S 

    P = Apply Instance Selection algorithm IS on A 

    V = Record Votes for instances in S 

 

X = Select Instances from D based on Voting results V and threshold t 

 

Return X 

 

• Bagging 

Each prototype set (p) is generated as a randomly selected subset of the original dataset (D). The training 

set (T) is then constructed using an instance selection (IS) base method, referred to as the IS model. Since 

the dataset (D) is sampled from a uniform distribution, all selected instances in (p) are assigned equal 

weights.  
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Algorithm 2 Algorithm Bagging of IS 

Input: Training set D= {(m1,n1),….,(mn,nn) 

Output: Subset of D (selected instance) D ⊆ S 

Initialize: 

  IS = Instance Selection algorithm 

  S = Sampled subset from training data D 

For i = 1 to z do: 

    A = Generate bootstrap sample from D and S 

    P = Apply IS algorithm on A 

    V = Collect votes for instances in S 

X = Select instances from D based on votes V and threshold t 

Return X 

• Feature Bagging 

It differs from traditional bagging primarily in its sampling strategy. While both methods employ an 

instance selection (IS) model to generate prototype sets (P), feature bagging forms the dataset (D) by 

randomly selecting a subset of features from the training set (T) rather than instances. The selected features 

are drawn from a uniform distribution, and each vote in the ensemble contributes equally to the final 

decision, as all are assigned equal weights. 

Algorithm 3 Algorithm feature Bagging of IS 

Input: Training set D= {(m1,n1),….,(mn,nn) 

Output: Subset of D (selected instance) D ⊆ S 

IS= IS algorithm 

S= samples ratio 

z= number of iteration 

t = Threshold 

wi=weight 

Initialize weights w_i = 0 for all instances in D 
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For i = 1 to z do: 

    A = Draw a sample from D using ratio S 

    P = Apply instance selection algorithm IS on A 

        For each instance selected in P: 

        Increase its weight: w_i += 1/z 

V = Aggregate votes (weights) for all instances in D 

X = Select instances from D where vote weight w_i ≥ threshold t 

Return X 

• Additive Noise 

In the additive noise approach, the instance selection (IS) model is used to construct each sample set (P. 

To form the final dataset, noise is introduced to each input instance within the training set. Despite the 

perturbation, all resulting samples contribute equally to the ensemble, with each vote carrying the same 

weight. 

Algorithm 4 Algorithm Noise of IS 

Input: Training set D= {(m1,n1),….,(mn,nn) 

Output: Subset of D (selected instance) D ⊆ S 

D: Training dataset 

IS: Instance selection algorithm 

S= samples ratio 

z= number of iteration 

t = Threshold 

wi=weight 

N= Noise 

𝜎 = noise level       //add Gaussian noise 

Initialize weights w_i = 0 for all instances in D 

For i = 1 to z do: 

    For each instance m in D: 
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        Add Gaussian noise: m' = m + N(0, σ) 

    A = D with added noise 

    P = Apply IS algorithm on A 

    For each instance in P: 

        Increase its vote weight: w_i += 1/z 

V = Aggregate votes for all instances 

X = Select instances from D where w_i ≥ threshold t 

Return X 

• Voting 

Voting is a classification technique in which multiple independent models often of different types are 

trained on the same dataset. These models then "vote" on the predicted output for each instance being 

classified. The final prediction is based on the majority or weighted majority of votes. This approach 

enhances the overall accuracy by combining the strengths of different models. 

3.4. Classification 

Classification is a supervised learning approach used to predict the category or class to which a given data 

instance belongs. For example, classification can be used to determine whether a train will arrive on time, 

be delayed, or be significantly late. Another common use case includes categorizing individuals based on 

age groups such as underage, average, or above-average. For a classification model to be effectively 

evaluated, the dataset must be labeled. This means each data instance should have a label (the true class) 

and predictor attributes (features used to predict the class). The label holds the actual values, while the 

prediction attribute represents the values predicted by the classification model. 

3.4.1.  k-Nearest Neighbor (KNN) 

The KNN algorithm classifies an unlabeled instance by comparing it to the k most similar instances in the 

training set referred to as its nearest neighbors. The similarity or "closeness" is typically measured using 

distance metrics in an n-dimensional feature space, with Euclidean distance being one of the most 

commonly used metrics. Since distance-based calculations are sensitive to scale, it is recommended to 

normalize the data before applying KNN. 

The classification process using KNN involves two main steps: 

1. Distance Calculation: Compute the distances between the new (unlabeled) instance and all instances 

in the training set. 

2. Voting Mechanism: Determine the class of the new instance based on a majority vote among its k 
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nearest neighbors. Optionally, weighted voting can be applied, where closer neighbors have a greater 

influence on the final prediction than those further away. 

An Artificial Neural Network (ANN), or simply a Neural Network (NN), is a computational model 

inspired by the structure and functioning of biological neural networks found in the human brain. ANNs 

consist of interconnected artificial neurons that process data collectively using connectionist principles. 

These networks are capable of learning and adapting their internal structure during training by adjusting 

their parameters in response to input data and desired outputs. Modern neural networks are widely 

employed for modeling complex input-output relationships and identifying intricate patterns within 

datasets. 

3.4.2. Feedforward Neural Network (FFNN) 

A FFNN is a type of ANN in which the flow of information is unidirectional from input nodes through 

any hidden layers to output nodes without forming any loops or cycles. These networks are particularly 

suited for problems involving classification, regression, and pattern recognition. 

3.4.3. Backpropagation 

The Backpropagation algorithm is a supervised learning technique used to train ANNs. It consists of two 

primary phases: 

1. Forward Propagation: Inputs are passed through the network to produce an output. 

2. Backward Propagation: The output is compared with the target value, and the resulting error is 

propagated backward through the network to update the weights. 

The algorithm adjusts the weights of the connections iteratively to minimize the value of a predefined 

error function. This process is repeated for many training cycles until the network reaches an acceptable 

performance level. When the error becomes sufficiently small, the network is considered to have learned 

the underlying pattern or function associated with the target data. 

3.4.4. Multilayer Perceptron (MLP) 

A MLP is a type of FFNN composed of multiple layers of interconnected neurons. Each neuron (except 

in the input layer) applies a non-linear activation function commonly a sigmoid function to its inputs. 

MLPs are organized as directed acyclic graphs, with each layer fully connected to the next. Training an 

MLP typically involves the backpropagation algorithm, where multiple layers of processing units 

(neurons) are adjusted iteratively. The goal is to minimize the error between the predicted and actual 

outputs across training examples. In many real-world applications, MLPs demonstrate strong performance 

due to their ability to model non-linear relationships and generalize from data when appropriately trained. 

The activation function used in many neural networks is the sigmoid function, which maps input values 

into the range between 0 and 1. To align with this output range, input values are typically normalized, 

often to a range between -1 and +1. Normalization ensures that the data is compatible with the activation 

function and improves the learning performance of the model. 
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In neural networks, the type of output node depends on the nature of the task: 

• For classification problems, a sigmoid output node is commonly used. 

• For regression tasks, the output node is typically linear to handle continuous values. 

4. Results and implementation 

This section presents the results of the experimental work and performance evaluation of the proposed 

methodology. The effectiveness of combining IS techniques with different ensemble learning classifiers 

is assessed and analyzed. 

4.1. Dataset detail 

To ensure fair and consistent evaluation, multiple experiments were conducted using six well-known 

datasets sourced from the UCI Machine Learning Repository. The characteristics of these datasets are 

summarized in Table 1. 

Table 2 Datasets Detail 

Datasets Number of Classes Number of Attributes 
Number of 

Instances 

Iris 3 4 150 

Sonar 2 60 208 

Heat 3 13 303 

Glass 6 9 214 

Liver 2 7 345 

Cleveland 3 60 297 

4.2. Parameter Configuration 

To maintain consistency across experimental conditions, predefined parameter settings were used for all 

methods. The parameter values for each technique are provided in Table 3. 

Table 3 Parameters Configuration 

Method Parameters 

CNN - 

ENN K=3,5 

All-KNN K Start =3, K Stop= 5,7 

GE - 
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IB2 
K= 3,5   Parameter upper interval =0.9 Parameter lower 

interval =0.7 

IB3 K= 3,5 

RENN K=3,5 

MC Prototype= 5-50, Iteration= [50,200] 

RMHC Prototype= 5-50 iteration [50,200] 

Bagging Threshold=0.1 iteration=10   

Feature Bagging Threshold=0.1    iteration=10 sample ratio=0.8 

Additive Noise Threshold=0.1   iteration=10    Noise=0.1 

KNN K=3,5,7 

NN Training cycle=100-500 Learning rate = [0.01,0.1] 

4.3.  Experimental setup 

The experimental process starts with data preprocessing, where all numerical attributes are normalized to 

the [0, 1] range. A 10-fold cross-validation technique is applied to ensure robust performance assessment. 

Within each fold, instance selection techniques are employed to reduce the training set, after which the 

classification model either KNN or NN is trained and tested. 

4.4. Classification Performance Analysis 

The performance of the ensemble methods is significantly influenced by the threshold value applied. In 

this context, a threshold defines the criteria for selecting samples or models during the ensemble process. 

Different threshold values result in varying subsets of instances, directly affecting the model’s 

performance. Identifying an optimal threshold is therefore crucial for maximizing classification accuracy 

and generalization. 

 

Figure 4 Threshold Performance on CNN 
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Figure 5 Threshold Performance on ENN 

 

Figure 6 Threshold Performance on IB2 

 

Figure 7 Threshold Performance on IB3 
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Figure 8 Threshold Performance on RMHC 

 

Figure 9 Threshold Performance on MC 

 

Figure 10 Threshold Performance on RENN 

In the figures above, we examined the relationship between compression and accuracy based on varying 

threshold values, and the results were compared using different instance selection techniques. The Heart 

dataset was selected for this evaluation, and the accuracy of the 5-NN classifier was measured for each 
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acceptance threshold: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8}. The experimental results indicate that 

increasing the threshold leads to greater dataset compression, which significantly affects classification 

accuracy in methods such as IB2, IB3, CNN, MC, and RMHC. In contrast, methods like ENN, All-KNN, 

and RENN demonstrate more stability, where minor compression has a negligible impact on classification 

performance. This suggests that these techniques are more resilient to instance reduction while preserving 

classification accuracy. 

Table 4 Iris Datasets Accuracy 

IRIS-Accuracy 

KNN 

 CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMH

C 

Basic 61.33 96.67 96.67 70 50.67 87.33 94.67 96.67 54.67 

Bagging 98 96.67 96.67 97.33 97.33 97.33 96.67 97.33 97.33 

Feature-

Bagging 

96.67 96.67 97.33 96.67 96.67 97.33 97.33 97.33 97.33 

Noise 97.33 97.33 97.33 97.33 97.33 97.33 97.33 97.33 96.67 

NN 

 CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMH

C 

Basic 67.33 96.67 86 56.67 89.33 96 74.67 96.67 47.33 

Bagging 97.33 96.67 96.67 97.33 97.33 97.33 97.33 96.67 97.33 

Feature-

Bagging 

97.33 96.67 96.67 96.67 97.33 97.33 96.67 96.67 97.33 

Noise 97.33 96.67 97.33 97.33 97.33 97.33 97.33 97.33 97.33 

Table 5 Sonar Datasets accuracy 

Sonar-Accuracy 

KNN 

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 72.5 77.81 79.74 80.62 66.29 63.5 65.5 78.31 63.5 

Bagging 83.6 79.74 81.19 82.1 83.1 82.62 82.19 79.74 80.17 

Feature-

Bagging 
83.6 

78.88 
80.26 78.88 83.6 81.21 82.14 80.34 80.19 

Noise 82.62 81.67 82.14 82.62 82.62 82.17 82.14 82.62 82.14 

NN 
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CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 76 80.31 80.79 80.24 68.31 71.6 79.83 71.6 75.45 

Bagging 83.74 80.79 83.74 81.31 81.26 82.76 82.21 79.83 82.69 

Feature-

Bagging 
83.24 

80.24 
82.19 81.76 82.62 81.69 82.67 80.83 81.26 

Noise 83.14 82.17 83.24 83.74 83.29 83.67 83.24 82.26 84.12 

Table 6 Heart datasets accuracy 

Heart-Accuracy 

KNN 

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 80.48 79.2 80.2 81.81 78.49 77.55 76.56 77.88 77.2 

Bagging 82.13 80.84 80.2 81.81 81.15 81.47 81.49 78.57 80.17 

Feature-

Bagging 81.82 

80.17 

80.2 81.48 81.82 80.48 81.49 81.48 80.83 

Noise 81.81 80.52 81.47 81.81 82.47 80.81 81.86 80.19 81.81 

NN 

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 78.24 80.31 80.86 81.81 82.09 78.85 75.57 81.56 73.2 

Bagging 82.54 81.29 82.18 83.18 83.16 83.14 83.49 80.19 82.15 

Feature-

Bagging 84.16 

83.14 

80.47 82.84 82.16 82.18 83.49 83.81 82.51 

Noise 83.82 82.86 82.22 83.15 85.45 85.45 83.16 81.82 82.2 

Table 7 Glass datasets accuracy 

Glass-Accuracy 

KNN 

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 70.119 63.07 69.7 69.7 61.65 66.43 59.83 61.36 50.61 

Bagging 70.19 63.25 69.29 69.22 70.19 70.17 69.26 61.41 69.72 

Feature-

Bagging 70.17 

67.42 

69.29 67.42 70.17 69.7 69.72 65.11 67.84 

Noise 70.17 65.09 69.29 69.7 70.17 69.7 68.35 64.61 67.36 

NN 

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 
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Basic 57.47 64.68 64.13 65.95 61.69 60.41 61.36 63.27 55.13 

Bagging 70.17 66.04 69.24 69.22 70.19 69.22 69.24 61.84 67.47 

Feature-

Bagging 70.65 

65.43 

68.83 68.77 71.62 70.67 68.31 66.06 67.36 

Noise 70.79 66.47 69.14 66.47 71.15 69.29 67.88 64.16 66.49 

 

Table 8 Liver dataset accuracy 

Liver Accuracy 

KNN 

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 64.36 66.36 66.39 65.22 58.87 54.75 58.31 65.51 58.29 

Bagging 65.22 67.27 66.39 65.22 65.51 67.85 66.98 66.7 68.13 

Feature-

Bagging 

65.5 67.24 65.22 65.22 64.42 67.24 66.16 68.14 66.99 

Noise 65.22 65.22 65.22 65.22 65.5 65.24 68.4 65.51 66.94 

NN 

 CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 66.67 68.13 70.13 70.14 66.69 55.97 64.38 65.52 66.93 

Bagging 71.35 68.11 71.92 71 72.45 72.79 70.45 68.12 69.6 

Feature-

Bagging 

70.73 73.31 67.5 71.59 70.5 68.43 72.19 68.72 68.43 

Noise 71.62 69.87 71.33 69.58 71.03 71.02 70.47 70.73 68.97 

Table 9 Cleveland dataset accuracy 

Cleveland-Accuracy  

KNN  

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 79.47 80.8 82.49 82.49 72.37 81.52 79.2 80.8 78.47 

Bagging 82.51 81.15 82.49 82.49 81.48 81.17 81.48 82.85 82.85 

Feature-

Bagging 82.84 

82.84 

82.49 82.84 82.15 81.84 81.47 82.48 81.48 

Noise 81.16 82.15 82.84 82.49 82.16 83.16 82.48 81.48 82.48 

NN  

 

CNN ENN All-

KNN 

GE IB2 IB3 MC RENN RMHC 

Basic 80.86 81.17 81.17 80.8 78.11 81.52 78.76 81.48 81.86 

Bagging 83.2 83.17 82.83 83.16 82.84 82.16 82.16 84.16 84.16 
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Feature-

Bagging 82.8 

82.84 

82.15 82.48 83.17 82.17 82.51 82.84 83.53 

Noise 82.13 82.85 82.84 82.52 82.15 82.82 83.52 83.56 82.84 

 

Figure 11 Accuracy of Iris dataset on KNN classifier 

 

Figure 12 Accuracy of Iris dataset on NN classifier 

Figures 11 and 12 illustrate that ensemble learning techniques contribute to improved classification 

accuracy. As shown in Table 4, the Bagging method achieves an accuracy of 98% with the KNN classifier 

and 97.33% with the NN classifier. While Bagging demonstrates higher accuracy with KNN, the overall 

average performance across methods is slightly better with the NN classifier. Among all instance selection 

techniques, ENN and All-KNN show the lowest performance on both KNN and NN classifiers. 
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Figure 13 Accuracy of Sonar dataset on KNN classifier 

 

Figure 14 Accuracy of Sonar dataset on NN classifier 

Figures 13 and 14 demonstrate that ensemble learning techniques yield higher accuracy compared to 

individual instance selection methods. According to Table 5, Bagging achieves an accuracy of 83.6% with 

the KNN classifier and 83.74% with the NN classifier. Among the instance selection techniques, CNN, 

IB2, and IB3 show strong performance with the KNN classifier, while CNN, IB2, and All-KNN perform 

better with the NN classifier. 
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Figure 15 Accuracy of Heart dataset on KNN classifier 

 

Figure 16 Accuracy of Heart dataset on NN classifier 

The results for the Heart dataset using Bagging, Feature Bagging, and Additive Noise are illustrated in 

Figures 15 and 16. As shown in the graphs, the performance of CNN, GE, IB2, IB3, and MC with the 

KNN classifier is superior to other methods. Similarly, in the case of the NN classifier, CNN, GE, IB2, 

IB3, and MC outperform the rest, as well as their KNN counterparts. Notably, the NN classifier increases 

accuracy by approximately 2% to 3% in GE, IB2, IB3, All-KNN, and MC across all ensemble methods, 

as detailed in Table 6. 
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Figure 17 Accuracy of Glass dataset on KNN classifier 

 

Figure 18 Accuracy of Glass Dataset Using NN Classifier 

Figures 17 and 18 illustrate the performance results for the Glass dataset. In the case of the KNN classifier, 

CNN, IB2, and IB3 demonstrate superior performance compared to other instance selection methods. 

When using the NN classifier, CNN, IB2, and RMHC yield better results. Notably, Additive Noise 

enhances the NN classifier’s performance, increasing accuracy by approximately 2% for IB2, MC, and 

RMHC. Conversely, ENN, RENN, and All-KNN exhibit the lowest accuracy levels on the Glass dataset. 
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Figure 19 Accuracy of Liver dataset on KNN classifier 

 

Figure 20 Accuracy of Liver dataset on NN classifier 

The accuracy results for the Liver dataset are presented in Figures 19 and 20. Using the KNN classifier, 

ENN, RENN, IB3, and RMHC show relatively strong performance. In contrast, with the NN classifier, 

CNN, IB2, IB3, and MC outperform other methods. Overall, the NN classifier enhances accuracy by 

approximately 3% to 6% compared to KNN. Specifically, in the feature bagging approach, NN with 

additive noise shows an improvement of about 6% in accuracy over KNN. A detailed breakdown of the 

Liver dataset's accuracy is provided in Table 7.  
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Figure 21 Accuracy of Cleveland dataset on KNN classifier 

  

 

 

 

 

 

 

 

 

Figure 22 Accuracy of the Cleveland Dataset Using the NN Classifier 

Figures 21 and 22 illustrate the performance of the ensemble instance selection techniques on the 

Cleveland dataset. With the KNN classifier, methods like CNN, ENN, RENN, and MC deliver strong 

results. In contrast, for the NN classifier, CNN, ENN, and RMHC show superior performance. Overall, 

the NN classifier demonstrates better accuracy than KNN, offering an improvement of approximately 2%. 

Detailed accuracy results for the Cleveland dataset are presented in Table 8. 
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Figure 23 Accuracy of Voting Technique with KNN and NN Classifiers 

In the voting strategy, the instance selection methods CNN, IB2, IB3, MC, and RMHC were chosen due 

to their higher compression ratios compared to other techniques. Including all IS methods in the voting 

process would result in nearly the entire dataset being retained for training. The voting-based accuracy 

results are presented in Figure 5.20. With the NN classifier, slight improvements in accuracy were 

observed for the Sonar, Heart, and Cleveland datasets, while the Liver dataset showed a more notable 

increase of approximately 4%. 

 

Figure 24 Average accuracy KNN classifier 
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Figure 25 Average accuracy with NN classifier 

Figures 24 and 25 illustrate the average accuracy achieved using basic methods, bagging, feature bagging, 

and additive noise. The ensemble instance selection (IS) methods significantly enhance dataset accuracy 

compared to the basic approach, as shown in the figures. Although the basic method (without ensemble) 

yields a higher compression ratio, its accuracy remains lower than all ensemble techniques, as indicated 

in Figure 5.23. Among the ensemble methods, bagging demonstrates the most effective performance. 

Additionally, the NN classifier consistently outperforms the KNN classifier across all setups. 

 

Figure 26 Compression ratio of all datasets across IS techniques 

Figure 26 presents the compression ratios achieved for each dataset across all instance selection (IS) 

methods. From the analysis, it is evident that CNN, IB2, and IB3 offer satisfactory compression, while 
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MC and RMHC demonstrate superior compression performance compared to the others. In contrast, 

ENN, All-KNN, GE, and RENN show relatively poor compression efficiency. 

5. Conclusion 

In this research, we evaluated the performance of four fundamental ensemble learning strategies—

Bagging, Additive Noise, Feature-Bagging, and Voting—combined with nine instance selection (IS) 

techniques: CNN, ENN, GE, All-KNN, IB2, IB3, RMHC, RENN, and MC, using two classifiers: KNN 

and NN. 

The study was structured into three main phases: 

● Phase 1: We examined the relationship between compression ratio and accuracy using the Iris 

dataset. Our findings showed that increasing the compression ratio typically leads to a decrease in 

classification accuracy. 

● Phase 2: We assessed the impact of the four ensemble learning techniques across six datasets. 

Results indicated that the NN classifier consistently outperformed the KNN classifier, particularly 

when combined with ensemble methods. Among all ensemble techniques, Bagging achieved the 

highest accuracy in most cases. Additionally, the ensemble-based models outperformed the base IS 

methods. 

● Phase 3: We compared the compression performance of the nine IS techniques both with and 

without ensemble methods. Techniques like CNN, IB2, IB3, MC, and RMHC provided significantly 

better data reduction compared to ENN, RENN, GE, and All-KNN. However, the results showed 

that no single ensemble-IS combination universally outperformed all others. Each ensemble method 

had strengths depending on the IS technique and dataset used. 

While this study focused on four ensemble strategies, modern ensemble learning includes advanced 

methods such as Stacking, Boosting, and AdaBoost, which we plan to explore in future research. 

Additionally, our study employed nine IS techniques, all based on the wrapping method. Future work will 

incorporate a wider variety of IS methods, including filter-based techniques and bio-inspired approaches 

such as Evolutionary Algorithms (EA) and Genetic Algorithms (GA). Our experiments were limited to 

two classifiers—KNN and NN. Future evaluations will include more diverse classifiers like Random 

Forest, Naïve Bayes, and Support Vector Machines (SVM) for a broader comparison. Lastly, this study 

utilized relatively small datasets. For a more comprehensive evaluation, future experiments will be 

conducted on larger and more complex datasets to test the scalability and robustness of the proposed 

methods.  
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