KM

Kashf Journal of Multidisciplinary Research
Vol: 02 - Issue 07 (2025)
P-ISSN: 3007-1992 E-ISSN: 3007-200X
https://kjmr.com.pk

ENHANCING INTRUSION DETECTION WITH 10T DATA: UNLOCKING

THE POWER OF ENSEMBLE TECHNIQUES

" Ahmad Murad, °Muhammad Bilal Azhar , ’Muhammad Fuzail*, *Ahmad Naeem, *Naeem Aslam,

*Nasir Umar

123456 Department of Computer Science, NFC Institute of Engineering and Technology, Multan,

Pakistan.

*Corresponding Author: mfuzail@nfciet.edu.pk

Article Info

This article is an open
access article distributed
under the terms and
conditions of  the
Creative Commons
Attribution (CC BY)
license
https://creativecommon
s.org/licenses/by/4.0

Abstract

With the recent spread of the Internet of Things (IoT) devices, network infrastructures
have grown to become more complex and vulnerable to attacks, and hence, the detection
of intrusions is an important aspect of cybersecurity. This thesis explores the usefulness
of ensemble learning methods to improve intrusion detection using the IoT. Six models
are tested in the study including Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Random Forest, Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM), and an ensemble model proposed, which incorporates three of the
tested models, SVM, KNN, and Random Forest. The experiment was carried out with a
real-world intrusion detection dataset of IoT. The models have been evaluated regarding
the accuracy of classification, behavior of the learning curve, analysis of the confusion
matrix, as well as such standard measures as precision, recall, and F1 score. Random
forest showed the highest accuracy among the standalone classifiers, getting 89.64
percent; KNN followed with 88.38 percent, obtained an accuracy of 69.4 percent, Multi
Layered Net got 71.6 percent, Support Vector Machine got 63.7 percent, and Multi-
Classifier Net obtained 89.64 percent. By contrast, the deep learning models were much
worse, with LSTM getting 65% and CNN 63%, most likely because of the limitation of
data and architectural inappropriateness. The ensemble learning model presented in this
paper was superior to the majority of the individual classifier accuracy, with the accuracy
being §89.32 percent, a precision, recall, and F1 being 0.89 each. It was also feasible that
it was more consistent and stable in the classification of different types of attacks, and
had fewer misclassification errors, individual models had issues with. The learning curve
of the ensemble ensured that it generalizes rather well with a little overfitting. This study
has come to the conclusion that ensemble learning offers a practical, precise, and scalable
way of detecting intrusion within IoT networks. The thesis shows the model to be a great
achiever, and it speaks of the feasibility of implementation. Avenues of future work are
the integration of real-time learning, improving the interpretability of the models and
testing the models on larger and more diverse datasets. These improvements are to be
made in order to bolster the resiliency and resilience of IDS systems operating in dynamic
and highly volatile [oT ecosystems
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Introduction

This sudden proliferation of the Internet of Things (IoT) has ushered in a new age of hyper-connectivity
in which everything a house has, as well as critical industrial infrastructure, becomes connected to the
internet. Although this has opened the gates of great convenience and technological advancement, this has
also opened systems to an increased risk in terms of security in greater untold aspects. Legacy security
systems, especially older versions of an Intrusion Detection System (IDS), are having a hard time keeping
up with increasing endpoints, the volatile traffic that comes with 10T, and the advanced complexity of
modern cyber threats[1]. Traditional versions of IDS, particularly signature-based systems, are good
against known threats but fail against the new and the obfuscated forms of attack patterns or evolving
forms of attack patterns. Conversely, anomaly-based systems are flexible and able to identify behaviors
not expected or even known about in advance, but they are more prone to high false positives, especially
when the behavior is not readily standardized, e.g., in IoT networks[2]. This is a significant issue in the
security of IoT systems as fast and proper identification of intrusions is critical, but the security resources
and computational resources are limited, making the application of heavy-duty security techniques
infeasible.

This study offers a possibility of an ensemble learning to fill these gaps. In the presented approach, several
machine learning (ML) classifiers (Support Vector Machines (SVM), Random Forest (RF), and K-Nearest
Neighbors (KNN)) were used together to create a more powerful and accurate intrusion detection system
suitable for the setting of IoT networks. The basis of this ensemble technique is that various algorithms
share different strengths and weaknesses, and by combining them, it is possible to reduce the weaknesses
of each algorithm and provide better detection capacities[2], [3]. It can be concluded that the ensemble
model was moderately successful, as the accuracy equals 89 percent, and precision and recall are 90 and
89 percent, respectively. Such findings best these individual ML and deep learning (DL) models, which
only achieved 63 percent to 65 percent highest accuracy. Notably, this sustained high performance came
without a relatively high number of false alarms, which is a fundamental need of applicability in the real
world, where finite resources and false positives due to erroneously issued alerts can result in unsafe
failure or unwarranted periods of unavailability.

The proposed ensemble model is especially appropriate in the context of [oT because the model is scalable
and highly efficient. It can work even in the challenges of limited devices and uncertain data availability.
By deploying lightweight ML models rather than computationally expensive DL networks, the system
provides a practical method of implementation in resource-sensitive applications such as smart homes,
medical devices, and industrial control systems. The ensemble learning also means that the security can
be maintained when the threat patterns change, and this is vital in the changing face of IoT networks. IoT
security cannot be reactive. The past techniques of using a known signature or consistent behavior will
not be adequate in a world where cyberattacks are becoming more complicated and dynamic[4], [S]. The
extent, variety, and openness of IoT are also something that its attackers can now exploit to their
advantage. 1oT networks have devices that have a diverse level of computational capabilities, ranging
from simple sensors that operate as a lump to sophisticated embedded systems. Such machines tend to
spend most of their time in hostile conditions and with a limited amount of security audits, which
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commonly makes them the target of different malevolent cycles, including Distributed Denial of Service
(DDoS) and data theft or remote control via a control-and-command (C&C) method.

Considering such weaknesses, they need to get smart and dynamic intrusion detection systems. The
advantage of ensemble learning is that the perspectives on data classification are united. As a case in point,
SVM is especially efficient in high-dimensional spaces and does it best at achieving optimal separation
between classes. Random Forest is noise strong and does not deal with non-linear relationships poorly.
KNN is basic and powerful in local decision-making. With a blend of such approaches, the ensemble will
provide a less biased and more wholesome system defensive mechanism. Remarkably, the ensemble has
an upper hand over deep learning models such as Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks, even though in theory, they perform better in pattern recognition and
temporal modeling. The experiments involving CNN and LSTM did not perform well because of the
overfitting aspect, the small size of the training dataset, and the uncertainty of training the architectures of
the two in environments that have very volatile data. In addition, deep learning models usually need far
more computing power as well as data to operate, which is undesirable when these models have to be used
in real-time intrusion detection in [oT[6], [7].

The other important value of this study is that it addresses real-life implementation. In addition to proving
the assertion that ensemble learning works in theory, the study will offer a road map to how such a system
can be incorporated into real-life IoT networks. The model will be implemented with the help of
containerized services on edge devices or gateways. These components can track traffic on the network
in real-time, carry out preprocessing steps to organize the data as well, and perform predictions based on
the ensemble model. The final output can then be determined through a voting mechanism, which may
contain the elicitation of alerts or automatic responses. This system is designed in modules, which makes
its update and scale easy. An individual classifier can be retrained or switched out as new attack vectors
are discovered or the behavior of the devices being monitored alters over time, without requiring the entire
system to be rebuilt. This makes the intrusion detection system effective and flexible in the long run.
Besides, the system has the capabilities of integrating feedback that would aid in learning from
misclassified instances and enhance efficiency in the long term, making it dynamic and robust[8], [9],
[10].

Intrusion detection should advance its technicalities and scales according to the size of the data [oT devices
produce. The conventional use of rule-based or manually adjusted systems is not adequate anymore. A
promising way forward seems to be the combination of machine learning techniques in an ensemble way.
Not only does it provide high detection and low false positives, but it can also be compatible with the
limitations and demands of IoT shares. This study demonstrates that the future of IoT cybersecurity is in
the hybrid or intelligent solutions that could learn and adjust every time[11]. The ensemble learning
method presented in this paper is effective not only to address the current requirements of 1oT intrusion
detection but also scalable enough to be applied in other security concerns of the future. With the rapidly
emerging scope of IoT in such critical domains as healthcare, transportation, and smart cities, the issue of
establishing trust, reliability, and privacy within these systems becomes a question involving national and
global interest. Finally, this investigation once again emphasizes the need to change the dynamic of a very
stable and single-algorithm intrusion detection solution towards the adoption of dynamic and multi-
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layered solutions that have the possibility of adapting to the changing nature of threats. The ensemble
model is one of the robust, effective, and practical solutions to such an issue, and it helps understand how
the power of carefully selected machine learning algorithms is the backbone of contemporary IoT security
systems.

Literature Review

The incremental role of the Internet of Things (IoT) use in virtually all spheres of contemporary life has
initiated an emergency demand for sophisticated strategies that can safeguard the numerous contemplated
transcending gadgets and networks. By using IoT devices to process and share data across different
industries, including but not limited to healthcare, smart homes, or industrial automation, the organizations
also increase their exposure to a far more comprehensive and even dazzling set of possible cyber threats.
This fact has necessitated intrusion detection systems (IDS) as an essential research field in cybersecurity,
especially because the conventional methods have failed to keep up with the demands that were presented
by loT environments[12], [13].

Early models of IDS are mainly signature-based detection systems, in which systems match network
traffic against collections of known attacks. Although successful in curbing threats that have already been
reported, this approach is reactive and may not have the capability of detecting zero-day exploits or new
forms of attacks. It was later realized that the disadvantage of this implementation is that it was hard to
detect anything anomalous, especially considering the idea of malicious behavior, which upon learning,
led to the derivation of anomaly-based detection algorithms to counter this weakness by creating accounts
of normal activities or statistical models, which then raised an alarm against any anomalies[14]. But in the
IoT environment traffic patterns cannot be expected to be heterogeneous, the behavior of devices is often
changing, and there are substantial differences in legitimate use, so anomaly-based detection methods tend
to produce many false positives to the point of being useless[15].

Machine learning (ML) and deep learning (DL) have become one of the main areas of recent research and
are being viewed as potentially preferable methods of detection in comparison with conventional
approaches to the latter. Support Vector Machines (SVM), Decision Trees, Random Forests (RF), and K-
Nearest Neighbors (KNN) form of ML have demonstrated that they can represent the intricate relationship
between features and predict the classification of known and unknown intrusions with an acceptable level
of accuracy. In particular, Random Forests have been known to be resistant to overfitting and to be able
to process high-dimensional data sets, which is a key feature when processing the variation that IoT
telemetry data belongs to. SVMs are useful when building clear decision boundaries in high-dimensional
space, and KNN can be flexible and simple enough to be used when local data patterns are important[16].

Other forms of deep learning, such as the Convolutional Neural Networks (CNN) and the long handles
shorter-Term Memory networks (LSTM), have also been examined due to the capability to automatically
capture hierarchical representation of features and the representation of dependencies. CNNs have shown
good results in visual-based intrusion detection and classification of network packets, whereas LSTMs are
especially well-adapted applications to learn temporal characteristics of time-series traffic data in an loT
setup. Although they have strong points, deep learning models are computationally expensive and demand
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high amounts of labeled data to attain peak precision, which creates an obstacle to their use in real-time
situations such as those concerning IoT devices that have restricted resources[17].

Due to the fact that no algorithm provides a universal solution, the focus has been shifted on the ensemble
learning method, where several classifiers are combined in order to use the combination of their
advantages. In past research works, it is observed that the variance and bias associated with individual
models can be reduced using ensemble methods, which have the potential of greatly enhancing detection
accuracy and generalization. As an example, the hybrid ensembles which contain both ML and DL
elements have appeared to enhance the resilience of IoT IDS to various attack types and threats

landscapes[18].
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Figure 1: Machine Learning Taxonomy

The potential of the usage of artificial neural networks and deep learning techniques in the field of
intrusion detection in the IoT space is not only immense but is complex. The diversity of device types,
communication protocols, and data format is in the range of surreal in the [oT ecosystems as opposed to
the traditional enterprise networks. Such systems may have all forms of basic sensors with very little
processing capability, to more elaborate edge devices with significant computing capability. Such
heterogeneity effectively increases the extent of intrusion detection considerably since an effective
security strategy has to take into consideration extremely diverse conditions of operations and threat bases.
This has led to deep learning, and in specific to artificial neural networks, as approaches that are showing
promise, because they enable learning of rich representations that can be done over raw or semi-structured
data, and thus are effective in capturing the variety and the subtleties that the 10T traffic brings[19], [20].

This extensive scope, however, comes with a lot of complexity in the development and deployment of the
models. Among the fundamental problems is the necessity of large amounts of high-quality labeled data
so that deep neural networks may be effectively trained. Most IoT networks produce severely skewed
data, where normal traffic vastly outnumbers the occurrences of an attack, which makes the learning
tricky, and those affected often necessitate elaborate sampling or augmentation strategies. Moreover,
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various application fields of IoT have their unique patterns of authorized behavior, and thus creating a
universal model is quite the challenge, hence leading to an appreciation of accuracy[21], [22].

The other complexity level is caused by the limitation of resources. DNNs such as CNNs and LSTMs are
computationally demanding and memory-intensive to train and to infer on. Although such can be applied
in controlled, centralized settings using dedicated servers, bringing the same models to lightweight IoT in
real-time can be impractical. This shortcoming was highlighted in the experiments used in this thesis,
whereby the CNN model and LSTM model only scored an accuracy rate of 63 percent and 65 percent
respectively, largely in part because of limited training conditions and inability to generalize the training
across different traffic profiles. In addition, the interpretability of deep-learning models is still a
considerable obstacle to the use. Artificial neural networks are usually opaque compared to traditional
machine learning algorithms like Random Forests or Support Vector Machines, which would often have
clear explanations to any of their decisions. Such transparency absence makes it challenging to rely on the
automated detections, as well as on their compliance with regulatory requirements that insist on providing
clear reasons behind security measures.

Methodology

One of the constraints that characterizes the design, implementation, and viability with regard to the
operation of intrusion detection systems within IoT environments is resource constraints. [oT networks,
in contrast, find themselves in roles where resources are seriously constrained in terms of processing
capabilities, memory, storage, and energy capacity, which are characteristic of only some types of
conventional enterprise infrastructures. Such limitations influence each phase of the model construction,
including data preprocessing and feature extraction, model training, and real-time inference. The
experiments were conducted using a model comprising 16GB RAM, a 100GB solid-state drive (SSD),
and a dedicated video card in this thesis. As far as small to medium sized datasets are concerned this
composition will suffice but the conflict between model complexity and computational practicability must
be considered. Ensemble methods Of ensemble methods, e.g. pairing of Support Vector Machines (SVM),
Random Forests (RF), and K-Nearest Neighbors (KNN) approaches, training individual base classifiers
separately is expensive, consuming memory and processing resources scaled with the number of training
instances and the size of the feature space. Such labor is augmented in cases where hyperparameter
adjusting is used or where other groupings methods such as stacking or boosting are involved. As another
example, Random Forests can eat up large amounts of RAM very fast, clocking hundreds of decision trees
and the prediction phase of KNN is computational heavy, as it needs to examine the distance from all
examples that are kept in storage.

Data preprocessing is a key step when establishing efficient intrusion detection systems, in general, and
in the context of IoT, in particular, raw data usually is noisy, inconsistent, and very variable between
devices and communication protocols. The quality of preprocessing has a direct influence on the capability
of'amodel to learn relevant patterns, demonstrate a high detection rate, and generalize to unknown threats.
In this thesis, data processing was carried out in such a way that we change raw data on the loT network
to cleaner, structured, and normalized data that can be used in machine learning and ensemble learning
algorithms.
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It started with data ingestion in which the IoT data was imported as CSV files. The data contained several
features representing different qualities of network flows e.g., number of packets, number of bytes,
connection length, and protocol types with a target label that consisted of benign and malicious traffic. As
soon as the data were loaded, they were investigated in terms of missing values, outliers, and conflicting
format. Such entries in records, which are either incomplete or have been corrupted were discarded since
they will tend to cause bias or noise when included in the training process. Then numerical representations
of categorical variables (protocols or flags as examples) were encoded using the techniques of encoding.
Label encoding or one-hot encoding was performed respectively depending on the feature to get all the
variables to be compatible with scikit-learn and other machine learning libraries. It was critical to do this
because the majority of classifiers such as Support Vector Machines and K-Nearest Neighbors needed
only a numeric input to calculate distances or build hyperplanes.

Dataset link: Aposemat-I0T-23 Analysis (kaggle.com)
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Figure 2: Methodology Flow
Data Preprocessing and Feature Extraction

Feature extraction and preprocessing are the key steps towards creating effective intrusion detection
system particularly in the IoT systems where data is multifaceted, huge and heterogenic. However, in
contrast to traditional networks, IoT systems produce structured as well as unstructured data, such as
network logs, time-series sensor data, and protocol-specific metadata and the data thus require specialized
cleaning and transformation. Under this thesis heading, raw IoT data cleaning was a starting point in
preprocessing, that is dealing with sparse values, eliminating duplications, and inconsistency corrections.
Other outliers like abnormal packet sizes were taken care of to avoid distortion during the training of
models. Then the categorical features such as protocol type and flags were encoded into label and one-hot
encoding so that they can be used in machine learning models such as SVM and KNN since they require
numerical inputs. Lastly, a Standard Scaler was used to scale the features because it standardized all the
features in terms of mean and standard deviation. This was crucially needed in the ensemble learning,
where input scales were adjusted to match, with models of varying sensitivity, e.g. extremely scale-
sensitive KNN and scale-sensitive SVM which required input to be scaled to allow calculation of optimal
hyperplanes. These measures made the data clean, consistent and optimal to learning so that the ensemble
model provided high and balanced performance of intrusion detection.

pg. 154



KJMR VOL.02 NO. 07 (2025) ENHANCING INTRUSION ...

Algorithm Selection Criteria

Selecting the right algorithms for intrusion detection in IoT environments is a critical design decision that
can determine the success or failure of the entire system. Unlike traditional IT infrastructures, IoT
networks involve a unique combination of challenges: heterogeneous device behavior, high-volume data
streams, constrained computational resources, and constantly evolving threat patterns. For this reason, the
algorithm selection in this thesis was based on a structured set of criteria to ensure that each chosen model
could effectively address these demands while contributing complementary strengths to the ensemble
learning framework.

Implementation and Experiments
SVM Algorithm Results

The Support Vector Machine (SVM) classifier learning curve depicts the relationship between a curved
learning curve and the improvement of performance with an increase in training data. Firstly, the accuracy
of training was 92, whereas the accuracy of validation was 78, which means overfitting. Validation
accuracy increased steadily and settled down at 84 or 85 percent when the amount of data increased
without any drop in training accuracy that shifted to about 88 percent, indicating that generalization got
better. The regularization and tuning of the kernel were properly achieved, which was also confirmed by
a large difference (3-4 percent) between training and validation. The results indicate the practical nature
of SVM when it comes to moderate data, goodness of generalization, and its applicability to be part of an
ensemble model since it helps to add overall strength of detection, which is displayed in Figure 3.

Learning Curve for SVM
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Figure 3: Learning curve for SVM

The confusion matrix for SVM showed 1,250 true positives and 1,750 true negatives, resulting in an
overall accuracy of 85.03%. It recorded 150 false positives and 100 false negatives, highlighting the trade-
off between detection and operational overhead. With a precision of 89.3%, recall of 92.6%, and F1 score
of 90.9%, the model delivered solid results. These findings support integrating SVM into an ensemble
model, as shown in Figure 4.
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Figure 4: Confusion Matrix for SVM

K-Nearest Neighbors Algorithm Results

The KNN learning curve started with overfitting of the data having training accuracy of 95% and
validation of 80%. The accuracy increased validating up to 89% and training down to 90%, and the gap
between the two became smaller, and performance was enhanced as more data was added. This shows the
performance of KNN when using adequate and clean data. Being sensitive to noise and computational
demanding, however, its ease of usage and high performance were worth the inclusion in the ensemble
model as illustrated in Figure 5.

Learning Curve for K-Nearest Meighbors
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Figure 5: Learning Curve for KNN

The results indicated that the overall performance was good with great accuracy in the classification of
benign, DDoS and C&C traffic following the insights provided by the KNN confusion matrix.
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Nevertheless, 1,157 DDoS samples were incorrectly classified as C&C, indicating the importance of
detecting similar assault patterns. Nonetheless, KNN reached precision and recall of 0.88 and F1 score of
0.87, which can be said reliable enough with very few false alarms. The results are in favor of the strength,
and position within the ensemble of KNN as demonstrated in Figure 6.
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Figure 6: Confusion Matrix for KNN

Random Forest Algorithm Results

Random Forest learning curve indicated that the training accuracy began at 99 percent and validation 85
percent; which means that overfitting occurred in the beginning. With each additional data, the accuracy
of validation climbed steadily and settled at 89 90%, with the training dropping a bit to 95%. Such
convergence implies better generalization and excellent model stability. The aforementioned results prove
the functionality of Random Forest in disclosing the complex pattern, and supports the reasonability of its
inclusion in the ensemble model, as demonstrated in Figure 7.

Learning Curve for Random Forest
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Figure 7: Learning Curve for Random Forest
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The random forest was seen to have confusion matrix with strong classification rates with an accuracy
rate of 89.64%. It successfully detected the majority of the benign as well as the attack samples particularly
DDoS and C&C. Nonetheless, 1,051 DDoS samples were found in the same category as C&C, which
showed overlap in the feature space. Since it has a precision of 0.90, a recall of 0.90, and an F1 score of
0.89, the model provided effective and balanced organ detection and is usable in the ensemble, as depicted

in Figure 8.
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Figure 8: Confusion Matrix for Random Forest
CNN Algorithms Results

The CNN learning curve indicated that training accuracy was initially 85 percent and then slowly
increased to 86 percent whereas validation accuracy was initially very low at 58 percent and then more or
less stabilized at 62 to 63 percent. This huge disparity of more than 20 percent points out overfitting and
lack of generalization since the model is sensitive to small and imbalanced IoT datasets. Although CNN
excelled in the learning of patterns, performance fell behind IN, supporting the fact that established
requirements in our modelling usage were greatly evident, which can be seen in Figure 9.

Learning Curve for CNN
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Figure 9: Learning Curve for CNN
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The CNN confusion matrix had 13,545 accurate predictions of benign traffic, which is regarded as fair
non-malicious activity detection. But the significant misclassification was that 1,963 DDoS samples were
predicted as C&C, and 611 C&C were falsely as benign. Having a precision of 0.61, a recall of 0.63, and
F1 score of 0.62, the model did poorly in multiclass classification. These findings demonstrate that CNN
generalizes poorly and should be improved, as proven in Figure 10.
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Figure 10: Confusion Matrix for CNN

LSTM Algorithms Results

LSTM learning curve indicated that the training accuracy was 80% that increased slowly to 86% and
validation accuracy was 55% and was stagnant after 64-65 percent. This 21 percent difference shows that
there is strong overfitting and poor generalization implying that LSTM could not identify unseen attacks
on [oT. Even though LSTM performed well with time data, it failed in the case where the datasets were
poor or lacked notable time-based features. These results verify that it is less effective in this situation, as
it can be seen in Figure 11.

Learning Curve for LSTM
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Figure 11: Learning Curve for LSTM
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According to the LSTM confusion matrix, true recognition in benign samples was 13,028, which indicated
that its ability to distinguish non-malicious traffic was not entirely weak. Nevertheless, the largest
misclassifications were 1964 DDoS-C&C and 587 C&C labeled as benign. LSTM had a 0.63 precision
value, 0.64 recall, and 0.63 F1 score, which could not detect multiclass attacks satisfactorily. These
findings represent its weaknesses with non-sequential or small data, as represented in Figure 12.
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Figure 12: Confusion Matrix for LSTM

Ensemble (SVM + RF + KNN) Algorithms Results

Learning curve of Ensemble Model started with training accuracy of 94% and validating accuracy of 82
that indicates the initial overfitting. Accuracy of the validation was rising gradually and stabilizing at 89.3
percent approaching the maximum of Random Forest. Training accuracy was also stabilized to 95.5% and
the performance corresponding to a gap of 6.2%. This indicates increased generalization and reduced
variance because of combining the classifiers in an effective way, which attests to the robustness of
ensembles, as in Figure 13.
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Figure 13: Learning Curve for Ensemble Model

pg. 160



KJMR VOL.02 NO. 07 (2025) ENHANCING INTRUSION ...

In the confusion matrix of Ensemble Model, there is an increased accuracy and the number of the
misclassification is lower than in individual classifiers. It accurately predicted 13,949 benign sample, and
the number of DDoS-to-C&C misclassifications was reduced to 1,032 that is much less than CNN (1,963)
and LSTM (1,964). The number of C&C-to-benign misclassifications remained at 551 also. Accuracy,
precision, recall, and F1 score were all zero point eight nine which shows a high rate of performance and
balance when applying the model, as well as consistency in the different classes, as shown in Figure14.
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Figure 14: Confusion Matrix of Ensemble Model
Comparison of Models

a study in the accuracy of six comparison models of IoT intrusion detection that was able to clearly show
traditional machine learning is superior to deep learning. Random Forest realized the greatest figure with
an accuracy of 89.64%. This reveals its capability of judgments which encompass complex interactions
of features. The Ensemble Model was closely behind with 89.32, which provided a better stability in
classes. KNN and SVM obtained 88.38 percent and 85.03 percent respectively. Conversely, deep learning
models did not perform well, with LSTM achieving only 65% and CNN 63% presaging the problem of
overfitting and high specificity. The findings stress on ensemble learning as the most harmonious and
useful method in this application, as exhibited in Table 1.

Table 1: Models' Accuracy Comparison

Model Accuracy
SVM 0.850373
K-Nearest Neighbors 0.883828
Random Forest 0.896466
Ensemble (SVM + RF + KNN) 0.893202
CNN 0.63
LSTM 0.65
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The log provides the chart of comparison of the accuracy of each model applied in the detection of IoT
intrusions. Random Forest attained a maximum accuracy of 89.64% as an individual measure, which
implied strong generalization and feature handling capabilities. Coming at second, the Ensemble Model
had an accuracy of 89.32% with slightly lower raw accuracy but better overall class balance and
consistency by virtue of the collective power of SVM, KNN and RF. KNN achieved a higher score of
88.38% as compared to SVM with reverting accuracy of 85.03%. The resulting results validate the
practical advantage of the ensemble as was demonstrated in Figure 15.
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Figure 15: Accuracy Comparison
Reason for Selecting an Ensemble Learning Model

The choice of the ensemble learning model made in the current study was informed by both a theoretical
consideration and empirical findings. Ensemble learning gathers several classifiers and reunites them to
produce greater predictive reliability, suppressing shortcomings in separate models. The combination of
the SVM, Random Forest, and KNN used the advantages of each model in a way, RF high standalone
performance (89.64%), KNN local classification performance (88.38%), and SVM margin optimizing
(85.03%). Though each of the models had its limitations, SVM with skewed classes and KNN with
different density of data, the ensemble coped with them properly. It also produced balanced accuracy of
89.32%, limited misclassification of overlapping attack types, such as DDoS and C&C, and its good
generalization as indicated by an F1 score of 0.89. Such outcomes confirmed its practicality and
applicability in a live IoT intrusion detection system.

Why ML Models for Ensembled Learning Model

An ensemble learning approach that includes SVM, Random Forest, and KNN was chosen to implement
because it is easy to explain and has high recognition rates using medium-sized loT datasets. It had
accuracy of 89.32 percent almost the same as Random Forest, but with a better balance of classes and few
misclassifications, particularly in similar attacks such as DDoS and C& C. The ensemble model was not
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only stronger and more stable compared with standalone models or deep learning models, but it also
provided greater generalization capacity and flexibility, as well as the possibility of deployment in real-
time. Although it demanded moderate computing resources and provided nearly no interpretability, its
modularity, scalability, and performance were very stable, presenting a useful solution to intrusion
detection of internet-of-things.

Conclusion and Future Work

In this study, the goal was to come up with an effective intrusion detection system (IDS) to the IoT
environments through ensemble learning. The paper has experimented with a variety of classification
models-Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) and compared them with a proposed
model of an ensemble of the three models- SVM, KNN, and Random Forest. As a result of extensive
experimenting and analysis, the ensemble model proved to be more effective in terms of the classification
success, accuracy, and precision, as well as the overall reliability. The random forest classifier had the
highest individual accuracy by percentage namely 89.64% indicating great pattern recognition and
generalization ability. KNN was close headed with 88.38 percent and SVM had an output of 85.03 percent,
both having limitations relative to classes. The deep learning models failed to perform the task
considerably, with the LSTM model attaining a performance of 65 percent and the CNN model performing
even worse with 63 percent, mostly caused by the constraints in the volume of the data, overfitting, and
an architecture that does not match the structure of the data. Conversely, the suggested ensemble learning
framework acquired a total accuracy of 89.32 percent, which was almost tantamount to Random Forest,
with the additional benefit of being in a better balance concerning the classes, along with fewer
misclassifications, particularly in the complicated cases like the difference between DDoS and C&C
traffic. The ensemble also had a precision and recall of 0.89 and 0.89, respectively, giving an F1 of 0.89,
indicating a very balanced capacity to detect. Its learning curve was a steady performance with little over-
fitting and high convergence of the training and validation accuracy, ensuring its generalization ability.

The outcomes confirm that ensemble learning not only shows equivalent or superior overall accuracy to
their detached models but also guarantees a steadier classification on diverse types of attacks. This renders
it very well-prepared to adopt practical usage in IoT applications, where traffic is heterogeneous and
adaptive. The work in the future will aim at improving the ensemble framework by implementing various
enhancements. First, the consideration of the real-time streams of data and the online learning process will
make it even more adaptable to new threats. Second, trust and transparency can be enhanced by adding
explainability layers with the help of SHAP or LIME. Third, more spatial and temporal relationships can
be caught by the ensemble by adding hybrid deep learning components. Moreover, testing bigger and
more heterogeneous [oT data will also be done so as to confirm further and fine-tune the scalability and
efficiency of the ensemble model. The proposed future direction can support the development of a more
intelligent, transparent, and adaptive IDS that would be more appropriate to loT security tasks of the next
generation.
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