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Abstract 

In this work, the approximate solution of the time fractional advection-

diffusion equation has been explored. A collection of polynomials in 

pieces that are smooth and governed by a group of control points comprises 

the B-spline functions. This study develops a numerical method based on 

Extended Cubic B-spline (ECBS) functions to solve the time fractional 

advection-diffusion equation (TFADE). The fractional derivative operator 

has been used in Caputo-Fabrizio sense, which features a non-singular 

exponential kernel. The finite difference method (FDM) is applied for 

temporal discretization while ECBS functions are used to approximate 

spatial derivatives. A thorough analysis of the method's stability and 

convergence is presented. Numerical results confirm the effectiveness and 

precision of the proposed scheme, with computed solutions closely 

aligning with known analytical solutions. 
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1. Introduction 

Within the fractional calculus (FC) discipline of mathematical analysis, several approaches to determining 

real or complex number powers are examined. In this extension of classical calculus, the integration and 

differentiation procedures of fractional order that are not integers are discussed. The development of 

fractional dynamics, fractional-differential equations (FDE), and other useful domains have depended on 

the theory of FC since the 19th century. It has recently revealed significant advancements and has grown 

into an intriguing subject. The FC has several uses in broad and diverse fields of science and engineering, 

including electrochemistry, fluid dynamics, and electromagnetics. Reports on physical and mechanical 

processes were made using it. 

A number of concepts and their ramifications are being contested by the FC. Chen [1] explored the use of 

a 2/3-order fractional Laplacian to model turbulent flows, offering a new perspective on turbulence 

dynamics. The paper presents theoretical insights and conjectures, suggesting that fractional models may 

better capture the complexity of turbulent systems. Gorenflo and Mainardi [2] provided a foundational 

treatment of fractional calculus, focusing on integral and differential equations of non-integer order. Their 

work laid the groundwork for applying fractional models in various scientific fields. Metzler and Klafter 

[3] presented a comprehensive overview of anomalous diffusion using fractional dynamics, highlighting 

how random walk models can effectively describe non-standard diffusion processes. Hilfer [4] explored 

diverse physical applications of fractional calculus, demonstrating its value in modeling complex systems 

with memory and hereditary properties. Bokhari, Kara, and Zaman [5] analyzed a mathematical model 

for brain tumor growth, deriving exact solutions and conservation laws to better understand tumor 

dynamics. Sokolov, Klafter, and Blumen [6] introduced fractional kinetics as a framework for describing 

anomalous transport phenomena, extending beyond classical kinetic theory. Diethelm & Freed [7] 

investigate numerical techniques for solving nonlinear fractional differential equations in viscoelasticity, 

highlighting their effectiveness in modeling complex rheological materials. Li et al. [8] examine a 

fractional-order delayed model of zooplankton–phytoplankton dynamics, revealing how time delays and 

memory influence ecological stability. Javaid et al. [9] explore the behavior of fractional Burgers’ fluid 

in a rotating annulus using a power-law kernel, showing how fractional models capture fluid memory 

effects. Recent studies have utilized fractional calculus to model complex biological systems. Farman et 

al. applied the Caputo operator to a measles model, Xu et al. developed a fractional HIV-TB coinfection 

model using real-world data, and Ahmad et al. analyzed tumor-immune interactions through a fractal–

fractional framework with dual kernels, highlighting the effectiveness of fractional tools in 

epidemiological and biomedical modeling [10, 11, 12] are just a few examples of its extensive use. In 

[13], the proportional Caputo-derivative is examined, along with several useful connections of the beta 

function and this novel derivative. According to FDEs, fractional models have their positive 

characteristics and behave effectively, in contrast to typical integer order duplicates. Consequently, it is 

necessary to examine the solution of these fractional models. Often, there are a lot of FDEs for which 

there are no analytic solutions. As a result, several recently released papers concentrate on the pursuit of 

estimated and systematic paths. This study considers the following TFADE for numerical solution. 

2

2

( , )
( , ) ( , ) ( , ),

w r t
w r t P w r t Q a r t

rt r





  
= − +

 
 0, ,p r q t t T       (1) 

with initial conditions (IC): 0( , ) ( )w r t w r=        (2) 

and the Boundary Conditions (BCs): 1 2(0, ) ( ), (1, ) ( ),w t t w t t = =     (3) 
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where ( , )a r t  is the source term and 0 1  . P, 0Q   are the diffusion coefficient and average velocity, 

respectively.  

The CFFD with a non-singular and non-local kernel is represented by the ( , )w r t
t








[14]. When applying 

the Laplace transform to certain bodily problems involving beginning conditions, the CFFD concept offers 

a notable advantage by providing alternative definitions of derivative operators. When 0 = , we only 

recover the original function when the function disappears at the origin. Applications of CFFD have been 

studied in fields such as the model of heat transfer [14], the physics-entropy [15], transducer’s [16], HEV’s 

model [17], cancer medicine [18], smoking model [19], and coronavirus [20]. 

Numerical and analytical approaches to solving TFADEs have attracted significant research attention. A 

method for estimating the TFADE based on the moving least-squares (MLS) approach was presented by 

Mardani et al. [21]. Bu and colleagues [22] proposed a V-cycle cross technique to deal with multi-term 

TFADEs. Sarboland [23] provided a suitable technique for utilizing the multiquadric quasi-interpolation 

operator to determine the time fractional PDE. Tian et al. [24] developed the polynomial spectrum-

collocation method using Caputo-fractional derivatives (CFDs) to address non-local situations. The 

SFADE has been developed Zheng et al. [25] using a FEM To solve the space–time Riesz–Caputo FADE. 

Shen et al. [26] introduced both implicit and explicit difference approaches. Azin et al. provide Chebyshev 

cardinal functions and modified Legendre to solve the TFADE [27]. An analytic & estimated analysis of 

two-dimensional TFADE was proposed by Ahmed et al. [28]. The fundamental solutions of T-FADE 

using the Caputo-Fabrizio operator were obtained by Mirza and Vieru [29]. Baleanu et al.[30] devised the 

q-homotopic analysis and homotopic perturbation strategies to solve the FADE using CFDs. Rubaab et 

al.[31] Use integral transform techniques to assess the FADE solution based on time-dependent boundary 

pulses. The integral transformation approach was established by Rubaab et al. [32] to study the solution 

of unstable TFADEs. Using the Mittag-Leffler kernel, Attia et al. [33] developed a numerical technique 

to solve time-fractional advection–diffusion equations based on the Atangana–Baleanu derivative in the 

Caputo framework. 

Many studies have employed splines to solve fractional differential equations because of their ease of use, 

compact support, good approximation, capacity to obtain estimated solutions to Fractional-Partial-

Differential-Equations (FPDEs) of any order, and found piecewise polynomial solutions with degree two 

continuity. Yaseen et al. [34] offered a capable system for resolving the KG equation with temporal 

fractions. Using cubic B-spline (CBS) roles, Abbas et al. [35] introduced the unique technique for solving 

the nonlinear third-order Kortewegde Vries problem. The revised CBS roles-based approach to solving 

the Allen–Cahn equation was presented by Khalid et al. [36]. Burgers' equations were numerically solved 

using ABFD by Shafiq et al. [37]. Shafiq et al. have studied the memory impact analysis of the diffusion 

equation [38]. To solve the Kuramoto–Sivashinsky problem numerically, Iqbal et al. [39] present new 

quantic B-spline functions. To tackle TFADE, Khalid et al. [40] create a numerical technique based on 

redefined ECBS functions. Shafiq et al. [41] was presented the CBS functions were presented to solve the 

TFADE. TFADE numerical solutions using ABFD were provided by Khan et al. [42]. The suggested work 

is motivated by recent developments in the investigation of TFADE algorithm numerical solutions. A 

wide range of natural phenomena, such as groundwater contamination, river system thermal pollution, 

pollutant discharges, and seepage of water, may be described by the ADE. Because of its extensive use, 

our aim in this work is to solve the TFADE using ECBS. Although a faculty member previously explained 

TFADE utilizing B. spline approaches, no one has utilized ECBS by a new calculation. The ECBS solves 

the TFADE using an h-weighted technique. Furthermore, a stability & convergence study of the 

arrangement is conducted. Providing a solution to certain numerical issues illustrates the usefulness and 

relevance of the suggested method. We establish that the strategy we have described yields efficient 
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outcomes by comparison got mathematical outcomes by logical findings. As far as the authors are aware, 

the proposed algorithm has not yet been explored for solving time-fractional advection–diffusion 

equations. 

That paper has the following shape: Section 3 introduces the current approach, whereas Section 2 provides 

the preliminary information. Convergence analysis and the stability of the present approach are explained 

in Sections 4 and 5, respectively. Section 6 looks at the instances' numerical outcomes. In Section 7, the 

conclusion is then covered. 

2. Preliminaries 

Definition: Let v
1
( , ), ,0 1,p q q pH    then CFFD with a non-singular Kernel is given as [14] 

2
1

20

( )
( , ) ( , )exp ( ) ,

2 2

M
w r t w r u t v dv

u v





 

 

   
= − −  −  − 

      (4) 

Where Error, editing field codes does not create objects. is the normalizing function that keeps 

(0) 1 & (1) 1,M M= =  
,

( )rE 
, Mittag-Leffler function holding ,1( ) ( ),E s E s =  that is provided as: 

,

0

( ) .
( )

m

m

r
E s

m
 

 



=

=
 +

  

Definition: If
2[ , ]g L p q , Parseval's identity is then determined by [43] 

2 2

0

2

ˆ ˆ( ) ( ) ,

ˆ( ) ( )

q

p
m

q
ins

p

g m g r dr

g m g r e dr



=

=

=

 



         (5) 

Each “m” represents its Fourier transformation. 

2.1. Basis functions 

At the knots, the interval [p, q] is separated into N equivalent sub-intervals.  

0 , 0 :1:kr r kh k N= + =  and 
( )p q

h
N

− −
=  is the distance b/w knots. The ECBS roles are  

)

)

)

3 4

1

4 3 2 2 3 4

1 1 1 1 1 2

4 3 2 2 3 4

3 3 3 3 2 3

4 (1 )( ) 3 ( ) , , ,

(4 ) 12 ( ) 6 (2 )( ) 12 ( ) 3 ( ) , , ,

( , ) (4 ) 12 ( ) 6 (2 )( ) 12 ( ) 3 ( ) , ,

i i i i

i i i i i i

k i i i i i i

h r r r r r r r

h h r r h r r h r r r r r r r

C r h h r r h r r h r r r r r r r

 

  

   

+

+ + + + + +

+ + + + + +

− − + − 

− + − + + − − − − − 

= − + − + + − − − − − 

)3 4

4 4 3 4

,

4 (1 )( ) 3 ( ) , , ,

0, ,

i i i i ih r r r r r r r

otherwise

 + + + +








− − + −  



 (6) 

Where the s variable is denoted by .R   Similar properties to those of the cubic B. spline, such as 

symmetry, convex hull property, and geometric invariability, are acquired by the ECBS for 8 1−   . 

When 0 = , the ECBS function deteriorates to the CBS role. 
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Now we take ( , )W r t  to be the ECBS estimate for ( , )w r t  in such a way that 

1

1

( , ) ( ) ( , )
N

m

k k

k

W r t t C r 
+

=−

=          (7) 

Where ( )m

k t  stands for the points that need to be calculated at every time-level and ( , )kC r   are Extended-

CBS functions. As of the ECBS’s local provision of property, ( , )kC r  is non-zero in 4[ , )i ir r+ . 

Consequently, only three non-zero basis functions are taken into account, 
1( , )kC r −

 ( , ),kC r   and 

1( , )kC r +
 for the evaluation at each knot. 

Thus, using (6) and (7) we acquire  

( )

1 1

1 1

1 12 2 2

4 8 4
( )

24 12 24

1 1
( ) 0

2 2

2 2 2
( )

2 2

m m m m

k k k k

m m m m

s k k k k

m m m m

ss k k k k

w

w
h h

w
h h h

  
  

  

  
  

− +

− +

− +

 − + −     
= + +     

     
 −   

= + +    
   

 + + +     
= + − +      

     

      (8) 

3. An explanation of the scheme 

This section presents the scheme in both temporal and spatial directions. 

3.1. Discretization in time 

The discretization of CFFD in (4) is provided by taking an interval [0, T] and splitting it in to grid points

0 10 ........ Mt t t T=    = , where mt M t=   And m=0, 1,…, M is divided into M equal subintervals with 

scope of 
T

t
M

 = at Knot 1mt t +=  [14, 37, 42]. 

1
2

1 120

( )
( , ) ( , )exp ( ) , (0,1)

2 2

mt

m m

M
w r t w r v t v dv

vt


  


 

+

+ +

   
= − −  −  − 

  

1
2

12
0

( )
( , )exp ( ) ,

2 2

l

l

m t

m
t

l

M
w r v t v dv

v

 

 

+

+

=

  
= − − −  − 

       (9) 

Eq. (9) is transformed using the forward difference formulation as 

1 11 1
1 12

0

( , ) 2 ( , ) ( , )( )
( , ) exp ( )

2 ( ) 2

l

l

m t
ml l l

m m t
t

l

w r t w r t w r tM
w r t t v dv

t t





 


 

+ ++ −
+ + 

=

− +  
=  − − +  −  − 

   

 

 

Hence,  

  1

1 12
0

( )
1 exp ( , ) 2 ( , ) ( , ) exp ( )

( ) 2 2

m
m

m l m l m l t

l

M
t w r t w r t w r t l t

t

  


  

+

− + − − − 

=

      
= − −  − + −  +       − −      


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  1

1 1 12
0

( )
( , ) ( , ) ( , ) ( , )

( )

m
m

m l m l m l m l t

l

M
w r t j w r t w r t w r t

t t





 




+

+ − + − − − 

=


= − + +

 
    (10) 

Where 1 exp exp ( )
2 2

lt and j l t
 


 

   
= − −  = −    − −   

and 
1m

t +

  was the shortness error, 

and this is bound, such that. 

1 2( )m

t t +

                                                                                         (11) 

Whereas   is a constant. 

That much is clear. 

• 0lj  and 0 1, 1(1) ,j E l m= =  

• 0 2 ...... , 0l l lj j j j j    → as ,l →  

• ( ) ( ) ( )
1

1 1 1 1 1 10 1

m m

l l m l l ml l
j j j E j j j j E

−

+ + += =
− + = − + − + =  . 

3.2. Discretization of space 

The numerical solution to TFADE is now presented. With the help of (10) and scheme, Eq.(1) becomes 

 1 12
0

1 1 1

( )
( , ) 2 ( , ) ( , )

( )

( ( , ) ( , )) (1 )( ( , ) ( , )) ( , ).

m

l m l m l m l

l

rr m r m rr m r m m

M
j w r t w r t w r t

t

Pw r t Qw r t Pw r t Qw r t a r t

 



 

− + − − −

=

+ + +

− +


= − + − − +


 (12) 

After simplification 

 1 1

0

2

1 1 1

( , ) 2 ( , ) ( , )

( )
( ( , ) ( , )) (1 )( ( , ) ( , )) ( , ).

( )

m
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l
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M


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 
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=
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− +


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
 

After expanding   value 

   0 1 1 1 1

1

2

1 1 1

( , ) 2 ( , ) ( , ) ( , ) 2 ( , ) ( , )
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=
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
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
 

For 1 =  We discretize (12) along the space discretization as: 

1 1 1 1 1 1 1

1 1 1

1

2 ( 2 ) ( ) ( )
m

m m m m l m l m l m m m

k k k l k k k rr k r k k

l

E w E w E w j w w w P w Q w a  + − − + − − − + + +

=

− + + − + = − +  
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1 1 1 1 1 1 1

1 1 1

1

( ) ( ) 2 ( 2 )
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t
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  Using (8) in (13), we get 
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After some simplification, we have 
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       

      

     

+ + +

− +

+ − + − − − − + − − −

− − −

=

− + − − −

+ + + − +

− − + − + − +

= − − − + − − +

− − + + + −


1 1 1

1 1 2 1 1) ,m m m

k k kp p p  − − −

− ++ +

 (15) 

1 2 3 4 52 2

4 8 1 2 (2 )
, , , ,

24 12 2 2
where p p p p p

h h h

   − + + − +
= = = = =  

There are N+1 linear equations with N+3 nonentities in system (15). For an inimitable solution, two 

supplementary equations can be derived from BCs (3). Thus, a matrix system of dimensions is obtained 

as follows: 

1
1 1 0 1

1

0

( )
m

m m m

l l m

l

B R j j j L   
−

+ − +

+

=

 
= − + + 

 
         (16) 

where,  

1 2 1

1 2 3

1 2 3

1 2 3

1 2 3

1 2 1

p p p

z z z

z z z

B

z z z

z z z

p p p

 
 
 
 
 

=  
 
 
 
 
 

,  



KJMR VOL.02 NO. 07 (2025) NUMERICAL TREATMENT OF … 

   

pg. 32 
 

1 2 1

1 2 1

1 2 1

1 2 1

0 0 0

0 0 0

p p p

p p p

C

p p p

p p p

 
 
 
 
 

=  
 
 
 
 
 

,  

1 0 1 1 1

1 1 1 1 1 1 1

1 0 1 1 2

T
m m m m m m m

N N N

T
m m m m m m m

N NL a a a a

      

 

− − +

+ + + + + + +

−

 =  

 =  

 

1 4 3 5 1 4 31 1 2 1 2 3 1,where z E p Pp Qp z E p Pp and z E p Pp Qp    = − − = − = − +  

The initial vector 0 1 0 1 1 , 1, , , , ,
T

m m m m m m

N N N      − − +
 =    is obtained by using ICs as follows, 

before using (16): 

0

0

0

( ) ( ), 0,

( ) ( ), 0 :1: ,

( ) ( ),

r k k

k k

r k k

W w r k

W w r k N

W w r k N

 = =


= =


= =

        (17) 

Eq. (17) is given in matrix form as follows: 

0 ,J U =            (18) 

Where,  

3 3 0

1 2 1 0

1 2 1 1

1 2 1 1

1 2 1

3 3

0 ( )

( )

( )

( )

( )

0 ( )

N

N

N

p p w r

p p p w r

p p p w r

J

p p p w r

p p p w r

p p w r

−

−   
   
   
   
   

= =   
   
   
   
   −   

 

Eq. (18)  is easily solved with the aid of an appropriate computing approach. All programming is done 

using Mathematica 12. 

4. Stability 

We use the Fourier scheme to examine the stability of the proposed numerical system. Let the numerical 

growth and analytical factors for the Fourier modes. [37], [40] be denoted by 
m m

k kand  , respectively. 

It specifies the mistake 
m

k  as: 
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, 1(1) 1, 0,1, , .m m m

k k k k N m M  = − = − =       (19) 

To simplify, we analyze the current method's stability in the absence of a forcing term.  

( ( , ) 0)a r t = [44]. Thus, using Eq.(15), we obtain 

1 1 1

1 1 1 4 3 1 2 5 1 1 1 4 3

1 1 1

1 1 1 2 1 1 1 1 1 2 1 1

1 1 1 1

1 1 1 1 1 1 2

1

[ ] [ ] [ ]

2 [ ] [ ]

[( 2 ) ( 2 ) (

m m m

k k k

m m m m m m

k k k k k k

m
m l m l m l m l m l m l

l k k k k k k k

l

E p Pp Qp E p Pp E p Pp Qp

E p p p E p p p

j p p

    + + +

− +

− − −

− + − +

− + − − − − + − − −

− − − − −

=

 − − + − + − +

=  + + −  + +

−  −  − +  −  − +  1 1

1 1 1 12 ) ]m l m l m l

k k p− + − − −

+ − −−  −

 (20) 

We can inscribe from ICs and BCs 

0 ( ), 1:1: ,k kw r k N = =          (21) 

and 

10 2( ), ( ), 0(1) .m m

m N mt t m M  =  = =       (22) 

The grid function is defined as: 

, , 1,2, , 1
2 2

2 2
0,

2 2

m

k k k
m

h h
r r r k N

p h h h
p r or r q


 −   + = −

 = 
+ −    



      (23) 

The Fourier expansion is now expressed as follows: 

2

( ) ( )

znx

m m q p

n

r n e


−

=−

 =           (24) 

where, 

2

1 2 1

1
( ) ( )

[ , , , ]

znx
q

m m q p

p

m m m m T

N

n x e dx
q p

and



 −

−

= 
−

 =   



 

Using the 2.  norm, we obtain 

( )

1
1 22

2

1

1

1 22 2 2
2 2

1 22

2

,

,
k

k

N
m m

k

k

h hNp r q
m m m

hh
p qr

k

q
m

p

h

dr dr dr

dr

−

=

−+ +

−−
=

 
 =  

 

 
=  +  +  
 

= 



  


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Using Parseval’s-identity(5), we have [43] 

2 2

( ) .
q

m m

p
n

dr n


=−

 =             

Consequently, we obtain 

2 2

2
( ) .m m

n

dr n


=−

 =           (25) 

Next, assume that the Fourier form of the answer is as follows: 

m m i kh

k e  =            (26) 

Where β is any real integer, h is a step size, and 1,i = −  is the Fourier coefficient. 

Putting (26) into (20), we get 

1 ( 1) 1 ( ) 1 ( 1)

1 1 4 3 1 2 5 1 1 4 3

( 1) ( ) ( 1) 1 ( 1) 1 1 ( 1)

1 1 2 1 1 1 2 1

1 ( 1)

[ ] [ ] [ ]

2 [ ] [ ]

[( 2

m i k h m i k h m i k h

m i k h m i k h m i k h m i k h m i kh m i k h

m l i k h m

l

e E p Pp Qp e E p Pp e E p Pp Qp

E e p e p e p E e p e p e p

j e

  

     



       

     

 

+ − + + +

− + − − − − +

− + −

− − + − + − +

= + + − + +

− − ( 1) 1 ( 1) 1 1

1 2

1

1 ( 1) ( 1) 1 ( 1)

1

) ( 2 )

( 2 ) ]

m
l i k h m l i k h m l i kh m l i kh m l i kh

l

m l i k h m l i k h m l i k h

e e p e e e p

e e e p

    

  

   

  

− − − − − − + − − −

=

− + + − + − − +

− + − − +

− −


 

After compiling the related phrases using the relation 2cos( )i h i he e h  −+ = , we obtain: 

1 1

11

1 1
(

m
m m m l m l

l

l

j
E

   


+ − + −

=

 
= − − 

 
        (27) 

2

2 2

1

12 (2 )sin 6 sin
2

1

(6 (4 )sin
2

h
P i Qh h

where
h

E h


   






 
+ + 

 = +
 

− −  
 

. Now it is clear that 11 0.and E    

Lemma 1: If 
m be the answer to Eq.  (27). After that 0 0(1) .m for m M  =  

Proof 

Mathematical induction will be used. In (27), for m=0, we obtain 

1 0 01
, 1.   


=    

From (27), we obtain 
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( )

( )

1 1

11

0 0 0

11

0

1 1
,

1 1
,

.

m
m m m l m l

l

l

m

l

l

j
E

j
E

   
 

  
 



+ − + −

=

=

 − −

 − −





  

Theorem 1: The plan that Eq. (15) suggests is constant. 

Proof 

Applying Lemma I and Eq. (25) to obtain 

0

2 2 , 0,1,........, .m m M   =        (28) 

This technique is therefore unconditionally stable. 

5. Convergence 

We lead the approach utilized in [45]. to investigate the convergence of the current strategy. Initially, the 

subsequent theorem is presented as [46], [47]. 

Theorem 2: Consider 4 2( , ) [ , ], [ , ]w r t C p q a C p q  and 0 1{ , , , }nx p r r r q= = =  be evenly distributed 

division of [𝑝, 𝑞] with , 0,1, , .ir p ih i N= + =  if ( , )w r t  be the unique spline for TFADE at the knots 

,ir x  then there is a constant 𝑗 independent of ℎ s.t. 0t  and 0,1, 2,i = we obtain 

( ) 4( , ) ( , )i i

iD w r t W r t k h −

−          (29) 

Lemma 2: The inequality is held by the ECBS set  1 0 1, , , ,N NC C C C− +  shown in Eq.(6) 

1

7
( , ) , 0 1

4

N

i

i

C r r
=−

    [48]       (30) 

Theorem 3: For TFADE, there is a numerical estimate ( , )W r t to analytic solution ( , )w r t . Besides, if
2[0,1]a C , then we get 

( ) 2( , ) ( , ) , 0,w r t W r t kh t


−          (31) 

where ℎ is a positive constant that is appropriate for a modest value and independent of ℎ. 

Proof 

We adopt that the calculated solution to 𝑊(𝑟, 𝑡) is 
1

1

( , ) ( ) ( , )
N

m

i i

i

W r t t C r 
+

=−

= . The triangle inequality is 

used to obtain 

( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .w r t W r t w r t W r t W r t W r t
  

−  − + −  
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With Theorem II's assistance for 𝑖 = 0, we attain 

( ) ( )4

0( , ) ( , ) ( , ) ( , ) .w r t W r t k h W r t W r t
 

−  −              (32) 

The current approach has the following collocation requirements,  

( , ) ( , ) ( , ), 0(1) .i iLw r t LW r t a r t i N= = =  

Adopt that ( , ) ( , ), 0(1) .iLW r t a r t i N= =  

Consequently, the difference ( ( , ) ( , ))i iL W r t W r t−  at any given position m can be expressed as 

1 1 1

1 1 1 4 3 1 2 5 1 1 1 4 3

1 1 1 1 1

1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1

1

1 1

1 2 1

[ ] [ ] [ ]

2 [ ] [ ] [( 2 )

( 2 ) (

m m m

i i i

m
m m m m m m m l m l m l

i i i i i i l i i i

l

m l m l m l m

i i i i

E p Pp Qp E p Pp E p Pp Qp

E p p p E p p p j p

p

       

        

   

+ + +

− +

− − − − + − − −

− + − + − − −

=

− + − − −

− +

− − + − + − +

= + + − + + − − −

+ − − +


1

1 1

1 1 1 2
2 ) ] .

m
l m l m l i

i i

a
p

h


 

+
− + − − −

+ −− − +

 (33) 

Where 
m m m

i i i  = −  for 1,0,1, , 1i N= − +  and  

2[ ] 0,1, , .m m m

i i ih a a for i N = − =  

As stated, the BCs are: 

1 1 1

1 1 2 1 1 0, 0,m m m

i i ip p p i N  + + +

− ++ + = =  

Inequality (29) makes it evident that 

2 4.m m m

i i ih a a kh = −   

Take max{ ;0 },m m m m

i i ii N e  =    = and 

max{ ;0 }.m m

ie e i N=    

Put 𝑚 = 0 into(33), we get 

 

1 1 1

1 1 1 4 3 1 2 5 1 1 1 4 3

0
0 0 0 0 1 0 1 0 1 0 1 0 0 1

1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1

1

0 1 0 ( 1) 0 1

2 1

[ ] [ ] [ ]

2 [ ] [ ] [( 2 )

( 2 ) ( 2

i i i

l l l

i i i i i i l i i i

l

l l l l

i i i i

E p Pp Qp E p Pp E p Pp Qp

E p p p E p p p j p

p

       

        

    

− +

− − − − + − − −

− + − + − − −

=

− + − − + − +

+

− − + − + − +

= + + − + + − − −

+ − − + −


0 1

0 0 1

1 1 1 2
) ] , 0(1)l l i

i i

a
p i N

h




+

− − −

+ +− + =

 

Utilizing IC 
0 0e =  the equation above, it becomes 



KJMR VOL.02 NO. 07 (2025) NUMERICAL TREATMENT OF … 

   

pg. 37 
 

1 1

1 1 1 4 3 1 2 5

1
1

1 1 1 4 3 2

[ ] [ ]

[ ] ,

i i

i
i

E p Pp Qp E p Pp

a
E p Pp Qp

h

    


  

−

+

− − + −

+ − + =
 

Now taking absolute value of 
1

i  and
1

i , we get 

4
1

2

1

6
, 0(1) .

(2 )[ 12 ] 6
i

kh
e i N

E h P Qh



  
 =

+ + −
 

We obtain from BCs the values of 
1

1e−  and
1

1Ne + : 

4
1

1 2

1

4
1

1 2

1

20 6
,

4 (2 )[ 12 ] 6

20 6
,

4 (2 )[ 12 ] 6
N

kh
e

E h A Bh

kh
e

E h A Bh

 

   

 

   

−

+

 +
  

− + + − 

 +
  

− + + − 

 

which implies  

1 4

1 .e k h  

Where 1k is independent of ℎ. 

To illustrate this theorem, we take a mathematical-induction to 𝑚. Considering it to be accurate for

1,2, ,j m= s.t 
2j

i je k h  and max{ ; 0,1,2, , }jk k j m= = . From, (33), we have  

1 1 1

1 1 1 4 3 1 2 5 1 1 1 4 3

1 1 1 1 1

1 1 1 2 1 1 1 1 1 2 1 1 0 1 1 0 1 1 0 1 1

1 1

0 2 0 2 0 2 1 0 1 1

[ ] [ ] [ ]

2 [ ] [ ] 2

2

m m m

i i i

m m m m m m m m m

i i i i i i i i i

m m m m

i i i i

E p Pp Pp E p Pp E p Pp Qp

E p p p E p p p j p j p j p

j p j p j p j p

       

        

   

+ + +

− +

− − − + −

− + − + − − −

+ − +

− +

− − + − + − +

= + + − + + − − − +

− − + 1 1 1 2

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 3

1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1

1 2 3

2 2 2 2 2 2 1

2 ( 2

2 2 ) ( 2

2

m m m m m

i i i i i

m m m m m m m m m

i i i i i i i i i

m m m

i i i

j p j p j p j p j p

j p j p j p j p j p j p j p j p j p

j p j p j p j

    

        

  

− − −

+ − − − −

− − − − − − −

− + + − − − −

− − −

−

− − + − −

+ − − + − − + − −

+ − − + 1 2 3 2 1

2 1 1 2 1 1 2 1 1 1 1 1 1 1 1

0 2 1 0 2 1 0

1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0

1 1 1 1 1 1 2 2

2 ) ( 2

2 2 )

( 2 2

m m m

i i i m i m i

m i m i m i m i m i m i m i

m i m i m i m i m i m

p j p j p j p j p

j p j p j p j p j p j p j p

j p j p j p j p j p j

    

      

    

− − −

+ + − − − − −

− − − − − − − + − + − −

−

− − −

− − + + −

− + − − + − − +

− − + − −
1

1 1 0 1

2 1 1 1 1 1 1 1 2
2 ) .

m

i

i m i m i m i

a
p j p j p j p

h


   

+

− −

− + + −+ − − +

 

Then 
1 1 1

1 1 1 4 3 1 2 5 1 1 1 4 3

1 1

0 1 1 0 1 1 0 1 1

1 1 1 1 1 2

0 2 0 2 0 2 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

[ ] [ ] [ ]

2

2 2 ( 2

m m m

i i i

m m m

i i i

m m m m m m m m m

i i i i i i i i i

E p Pp Pp E p Pp E p Pp Qp

j p j p j p

j p j p j p j p j p j p j p j p j p

       

  

        

+ + +

− +

+ −

− − −

+ − + − − −

+ + + − − −

− − + − + − +

= − − − +

− − + − − + − −

1 2 1 2 1 2 3

1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1

1 2 3 1 2 3 2 1

2 2 2 2 2 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1

2 2 ) ( 2

2 2 ) ( 2

m m m m m m m m m

i i i i i i i i i

m m m m m m

i i i i i i m i m i

j p j p j p j p j p j p j p j p j p

j p j p j p j p j p j p j p j p

        

       

− − − − − − −

+ + + − − −

− − − − − −

+ + + − − − −

+ − − + − − + − −

+ − − + − − + + −

0 2 1 0 2 1 0

1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1

1
1 0 1 1 0 1 1 0 1

1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2

2 2 )

( 2 2 2 ) .

m i m i m i m i m i m i m i

m

i
m i m i m i m i m i m i m i m i m i

j p j p j p j p j p j p j p

a
j p j p j p j p j p j p j p j p j p

h

      


        

− − − − − − + − + − +

+
− − −

− − − + + +

− + − − + − − +

− − + − − + − − +

 



KJMR VOL.02 NO. 07 (2025) NUMERICAL TREATMENT OF … 

   

pg. 38 
 

Now applying norms on 
m

i and 
m

ia  use the highest possible norm values, 1 1,m m

i i − + and IC 
0 0e = we get 

 
4 1

1

12
01

6
( )

(2 )[ 12 ] 6

m
m

i l l

l

kh
e j j

E h P Qh


  

−
+

+

=

 
 + − + + −  

 ,       

Likewise, we obtain 
1

1

me +

−  and 
1

1

m

Ne +

− from the BCs as 

4 1
1

1 12
01

20 6
( )

4 (2 )[ 12 ] 6

m
m

l l

l

kh
e j j

E h A Bh




   

−
+

− +

=

 +  
 + −   − + + −   

 , 

and  

4 1
1

1 12
01

20 6
( )

4 (2 )[ 12 ] 6

m
m

N l l

l

kh
e j j

E h A Bh




   

−
+

+ +

=

 +  
 + −   − + + −   

 , 

Thus, for every 𝑚, we get 

1 2me kh+   

Specifically 

1

1

( , ) ( , ) ( ) ( , ).
N

m m

i i i

i

W r t W r t C r  
+

=−

− = −  

Therefore, applying Lemma II and the aforesaid inequality, we arrive at 

27
( , ) ( , )

4
W r t W r t kh−           (34) 

Inequality (32) with(34), provides 

4 2 2

0

2

0

7
( , ) ( , ) ,

4

7
.

4

W r t W r t k h kh kh

k k h k

−  + =

= +

 

Theorem 4: The TFADE along IC and BCs is convergent 

Proof 

Consider ( , )w r t and ( , )W r t  are the approximate and analytic solutions of Time Fractional-ADE, 

respectively. Accordingly, the relation (11) and the above theorem confirms that random constants k  and 

𝜚 exist as,  

2( , ) ( , )w r t W r t kh


−  +  𝜚 2( )t  

Thus, the presented method is convergent. 

file:///C:/Users/ikon/AppData/Local/Microsoft/Windows/INetCache/IE/71N49LG6/(11)%23page14
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6. Test problems and discussions 

This section's implementation of the suggested problem can be used to assess the current scheme's validity 

using error norms 2 ,L L  as 

2

2

2

0

( , ) ( , )

( , ) ( , ) ,

( , ) ( , )

k k

N

k k

k

k k

L w r t W r t

h w r t W r t

L w r t W r t

=





= −

= −

= −

  

Additionally, the convergence order [41] can be computed by 

(2 )
log

( )
.

2
log

L N

L N

N

N





 
 
 

 
 
 

 

In every problem, the normalizing function ( ) 1M  = is assumed. 

Problem 1: Take a=1 and b=2, solve (1)–(3) using the initial and boundary conditions ( ) rw r e= , 

1( )t Et = , 2 ( )t eEt = , respectively, and take into account the homogeneous source term on [0, 1]. 

The Mittag-Leffler function is represented by𝐸𝜑, while the precise analytical solution [48] is

( , ) ( )rw r t e E t= .
0

( ) .
( 1)

m

m

r
E s

m






=

=
 +

  

𝐿∞ and 𝐿2 are compared between MCTB-DQM [48] and the suggested approach based on extended 

cubic B-spline for various values in Tables 1-3. The accuracy of our method is higher than that of the 

MCTB-DQM method with 𝑂(∆𝑡3 + ℎ2)[48]. By choosing 𝛼 =  0.5 𝑁 =  100 & 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑇 =  1, 

the comparison at various r values is displayed in Table 4. The comparison of approximated and 

exact values for a fully implicit scheme is shown in Figure 1. 

   
2

2

( , )
( , ) ( , ) ( , ), 0,1 , 0,1 ,

w r t
w r t w r t a r t t r

t r r





  
= − +  

  
 

with initial condition (IC) and the boundary conditions (BCs): 

( ,0) 0 (0, ) (1, ) 0w r and w t w t= = =  

Table I: A comparison of the maximum error of problem I at 𝑻 = 𝟏, ∆𝒕 =
𝟏

𝟏𝟎𝟎
 & 𝜶 = 𝟎. 𝟐 

 FDM [48] Proposed method 

N 𝑳∞ 𝑳𝟐 𝑳∞ 𝑳𝟐 Order 

08 1.4902 × 10−2 1.0412 × 10−2 3.1949
× 10−6 

2.9348
× 10−6 

……… 
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16 3.8827 × 10−3 2.6898 × 10−3 9.0501
× 10−7 

8.7103
× 10−7 

1.8260 

32 1.0156 × 10−3 6.6522 × 10−4 2.4780
× 10−8 

2.2130
× 10−8 

5.1912 

64 2.5720 × 10−4 1.4842 × 10−4 6.3839
× 10−8 

5.9031
× 10−8 

1.9635 

128 6.3504 × 10−5 2.2129 × 10−5 9.4751
× 10−9 

9.9734
× 10−9 

2.6877 

Table II: A comparison of the maximum error of problem I at 𝑻 = 𝟏, ∆𝒕 =
𝟏

𝟏𝟎𝟎
 & 𝜶 = 𝟎. 𝟓 

 FDM [48] Proposed method 

N 𝑳∞ 𝑳𝟐 𝑳∞ 𝑳𝟐 Order 

08 6.3092 × 10−3 4.4047 × 10−3 6.3401 × 10−6 4.3211
× 10−6 

……… 

16 1.6452 × 10−3 1.1394 × 10−3 7.9944 × 10−7 5.2209
× 10−7 

1.9081 

32 4.3121 × 10−4 2.8317e × 10−4 5.0679 × 10−7 3.2439
× 10−7 

1.8542 

64 1.0956 × 10−4 6.4521 × 10−4 8.3292 × 10−8 7.5078
× 10−8 

2.0593 

128 2.7227 × 10−5 1.0443 × 10−5 7.1426 × 10−8 2.3544
× 10−8 

2.1304 

Table III: A comparison of the maximum error of problem I at 𝐓 = 𝟏, ∆𝐭 =
𝟏

𝟏𝟎𝟎
 & 𝛂 = 𝟎. 𝟖 

 FDM [48] Proposed method 

N 𝐋∞ 𝐋𝟐 𝐋∞ 𝐋𝟐 Order 

08 4.1559 × 10−3 2.9052 × 10−3 2.7015 × 10−6 1.4218
× 10−6 

……… 

16 1.0852 × 10−3 7.5335 × 10−4 7.0223 × 10−7 5.2491
× 10−7 

1.8173 

32 2.8491 × 10−4 1.8911 × 10−4 6.8039 × 10−7 4.3076
× 10−7 

2.1081 

64 7.2683 × 10−5 4.4967 × 10−5 5.2991 × 10−8 3.4729
× 10−8 

1.9916 

128 1.8220 × 10−5 8.7572 × 10−6 8.6339 × 10−8 5.7703
× 10−8 

1.9979 

Table IV: A comparison of the exact solution & approximated solution at T = 1, 𝐡 =
𝟏

𝟏𝟎𝟎𝟎
, N=100, 

𝛂 = 𝟎. 𝟓 and 0.00001 =  for problem I 

r Exact Solutions Approximate solutions Errors 

0.1 5.535779114478685 5.535779116592377 2.1136923322728762x10-9 
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0.2 6.117982086212403 6.117982072209552 1.4002851322914012 x10-8 

0.3 6.761415878989728 6.761415845475604 3.351412392049724x10-8 

0.4 7.472520194474339 7.472520149457045 4.5017293892613 x10-8 

0.5 8.258412003666022 8.258411962222271 4.144331278155278 x10-8 

0.6 9.126956775938526 9.126956754832165 2.110636110330688 x10-8 

0.7 10.086847199300735 10.086847210385214 1.1084479112355439 x10-8 

0.8 11.14769017973997 11.147690221970283 4.223031346839434 x10-8 

0.9 12.320102990366102 12.320103040206876 4.984077328629155 x10-8 

Piecewise solution of Problem 1 
( 21)2.729277964441845 10 (2.0123439294442163 ( 0.06575695898575865

(1.238435969207705 6.4128142436886675 ) )),   [0.00,0.01)

0.03373551437930211 (2.696106266647739 ( 4.921162268441179

(

( , )

r r

r r if r

r

w

r

r t

− + + −

+ − 

− −

=

+ +

+

( )

14.740552539774342 16.594358597374196 ) ,   [0.01,0.02)

0.565764802877835 (8.106471656532946 ( 24.24284366661641

41.925852772138455 27.23284722449995   [0.02,0.03)

3.18092471146921 (25

))

)),

r if r

r r

r

r

rr if r

− 

− + + −

− 

− +

+

( )

( )

.79623209113032 ( 66.20039698373068

80.98155670997653 37.18194751375938   [0.03,0.04)

11.10896340955324 (65.89070591385746 ( 137.14566824258077

129.97160954364062 46.21591429375769 ,  

)),

))

r

r

r

r if r

r r

r if r

+ −

+ − 

− + + −

+ −

( )

  [0.04,0.05)

29.433017927735364 (139.70882262444684 ( 240.87507446471272

186.3986954656898 54.11188297696924 ,    [0.05,0.06)

64.89928800300447 (258.0962741725207 ( 378.1484058496071

247.3

))r

r r

r if r

r r



− + + −

+ − 

− + + −

+ ( )

( )

2121409266165 60.67543770792986 ,   [0.06,0.07)

125.27934484008802 (429.57483266368854 ( 546.3591282606212

309.46314258501206 65.74496178807499 ,   [0.07,0.08)

218.28152815780413 (658.4

))

))

r if r

r

f

r

r

r

r i r

r

− 

− + + −

+ − 

− +

( )

( )

48695935278 ( 739.3893049585749

369.3384540958532 69.19562671407039 ,   [0.08,0.09)

350.0548785760893 (943.016031229532 ( 947.6619653336547

423.38511510104854 70.9424656632466 ,   [0.09,0.1

r

r if r

r r

r if r

r

r

+ −

+ − 

− + + −

+ −  0)




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
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





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

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( )

523.3764212740198 (1274.0357944057796 ( 1158.3956916160714

468.1042007197375 70.94246566324341 ,  [0.10,0.11)

735.6566859547802 (1633.5930130110391 ( 1356.0571544512532

500.19943608598

( , )

r

w

r

r

r r

r i

r

t

f r

− + + −

+ −

=



− + + −

+ ( )

( )

805 69.19562671406788 ,  [0.11,0.12)

976.9358097288441 (1994.490334518192 ( 1522.99830763324

6

))

28

516.7124132708377 65.74496178807703 ,  [0.12,0.13)

1228.0703419369383 (2320.270241201 15 (

r if r

r r

r ir f r

r

r

r

− 

− + + −

+ − 

− + + −

( )

( )

1640.256280279682

515.1488233336713 60.67543770793236 ,   [0.13,0.14)

1459.3263126475176 (2565.941811845245 ( 1688.4860278078995

493.59128066373887 54.11188297696958 ,   [0.14,0.15)

1629.5

))

r

r if r

r r

r i

r

f r

+ − 

− + + −

+ − 

−

( )

952132142775 (2679.449535526539 ( 1648.9888537741645

450.79469775317193 46.21591429375735 ,   [0.15,0.16)

1686.4345577465792 (2603.880352527078 ( 1504.793883012033

386.2605759115868 37.18194

))

r r

r ifr r

r r

+ + −

+ − 

− + + −

+ −( )

( )

751376035 ,   [0.16,0.17)

1567.128112843262 (2280.3978476968005 ( 1241.7655634001494

300.2921983351812 27.23284722450279 ,   [0.17,0.18)

1199.5253294508366 (1649.8912975390049 ( 848.67

))
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r if r

r r

r if r

r

r

r

r



− + + −

+ − 

− + + −

( )

( )

32554375558

193.79030770244026 16.594358597377038 ,   [0.18,0.19)

580.5941484021532 (757.0821709094016 ( 368.14541102786825

79.34736449803222 6.412814243689297   [0.19,0.20)
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Fig. 1. Comparison graph for exact and approximated values 
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Fig. 2. Plot for the exact solution 

 
Fig. 3. Plot for the approximated solution 

 
Fig. 4. Graph for absolute error 
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Problem 2: The homogeneous source term is 
2

2 22 sin 2
( , ) 4 sin(2 )

(3 )

t r
a r t t x

 
 



−

= +
 −

 on [0, 1] when 

we solve (1)-(3) with initial and boundary conditions ( ) 0w r = , 
1( ) 0t = , 2( ) 0t = respectively, for 

a=1,b=2. The precise analytical solution [48] is 2( , ) sin(2 )w r t t r=  

The errors between the estimated and exact analytical solutions at various knots corresponding to N =

 100, α =  0.5, λ =  −0.00065, ∆t =  
1

100
, and T =  1. are shown in Table 5. The absolute error for 

Problem 2 for N =  50, α =  0.3, ∆t =  0.1, and T =  10 is displayed in Table 6. all the graphical results 

can also be seen in Figs. 5, 6, 7, and 8. 

Table V: A comparison between the approximated and exact solutions at various knots 

s Exact Solutions Approximate solutions Absolute Errors 

0.1 0.5877852522924731 0.5877852522911452 1.3279377597541497x10-12 

0.2 0.9510565162951535 0.9510565162910587 4.094835581724965x10-12 

0.3 0.9510565162951535 0.9510565162879967 7.156830683641147 x10-12 

0.4 0.5877852522924731 0.5877852522831861 9.287015600989434x10-12 

0.5 0.0 9.637346476409903x10-12 9.637346476409903x10-12 

0.6 0.5877852522924731 0.5877852523005364 8.063216760945124x10-12 

0.7 0.9510565162951535 0.951056516300331 5.177414053036955 x10-12 

0.8 0.9510565162951535 0.9510565162972706 2.117084285657711 x10-12 

0.9 0.5877852522924731 0.5877852522925808 1.0769163338864018x10-13 

Table VI: A comparison between the approximated and exact solutions at various knots 

s Exact Solutions Approximate solutions Absolute Errors 

0.1 0.5877852522924731 0.5877852522923219 1.5121237595394632x10-13 

0.2 0.9510565162951535 0.951056516293149 2.00450767096072x10-12 

0.3 0.9510565162951535 0.9510565162904001 4.753419879932608 x10-12 

0.4 0.5877852522924731 0.5877852522851764 7.296718784743916x10-12 

0.5 0.0 -8.633243425704151 x10-12 8.633243425704151 x10-12 

0.6 -0.5877852522924731 -0.5877852523007171 8.2439610693541x10-12 

0.7 -0.9510565162951535 -0.9510565163014426 6.289080367594124 x10-12 

0.8 -0.9510565162951535 -0.9510565162986995 3.5459413183502875 x10-12 

0.9 -0.5877852522924731 -0.5877852522935882 1.1151080059335072 x10-13 
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Fig. 5. Comparison graph for exact and approximated values 

 
Fig. 6. Plot for the exact solutions 

 
Fig. 7. Plot for the approximated solutions 
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Fig. 8. Graph for absolute error 

Conclusion 

In this research, a computational technique has been developed using the ECBS method alongside 

the CFFD scheme to address time-fractional advection–diffusion equations (TFADE). The spatial 

derivatives are approximated through ECBS basis functions, while the time domain is discretized 

using a finite difference approach. The method is shown to be stable, achieving second-order 

accuracy in both space and time, with convergence rates of O(h)2 and O(∆t)2, respectively. Several 

numerical examples have been tested to demonstrate the method’s reliability and precision, 

outperforming previously published techniques. Some extensions of this work remain for future 

investigation. The ECBS method holds potential for tackling more complex problems, such as space-

fractional equations, variable-order systems, and higher-dimensional fractional PDEs. It may also 

prove effective for equations involving alternative fractional operators. 
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