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Abstract 

The present work focuses on solving the one-dimensional static Phi-4 

(ϕ⁴) nonlinear differential equation using the Hybrid Cubic B-Spline 

(HCS) method. This nonlinear field equation arises in various physical 

contexts, including quantum field theory, phase transition models, and 

nonlinear optics. Traditional methods, such as finite difference or 

spectral techniques, face limitations in handling sharp transitions or 

ensuring smoothness across the domain. The HCS approach, a fusion of 

finite element and spline-based methods, offers high accuracy with 

smooth approximation. The mathematical derivation of the method, 

stiffness matrix construction, and implementation of boundary 

conditions are discussed in detail. Results are validated against the exact 

analytical kink solution, and the error analysis shows excellent 

agreement, confirming the efficacy of the method. This work 

emphasizes the stability, accuracy, and potential of HCS for solving 

nonlinear boundary value problems in mathematical physics. 

  
Keywords: 

Hybrid Cubic B-Spline Method, Static Phi-4 Equation. Nonlinear Differential 

Equation. 

mailto:ayesha.mnazakat@gmail.com


KJMR VOL.02 NO. 07 (2025) NUMERICAL INVESTIGATION OF … 

   

pg. 2 
 

1. Introduction 

The ϕ⁴ model has long stood as a central topic in the study of nonlinear field equations due to its rich 

mathematical structure and broad applicability across disciplines such as quantum field theory, condensed 

matter physics, and statistical mechanics. Originally introduced as a simplified field-theoretic model to 

understand spontaneous symmetry breaking [1], the ϕ⁴ equation exhibits a nonlinear interaction potential 

of the form 

2
2

2( )
4

m
V


 



 
= − 

 
 

giving rise to topologically stable solutions known as kinks [2, 3]. These kinks represent a transition 

between vacuum states and are essential in describing phenomena such as domain walls in ferromagnets, 

optical pulse propagation, and solitonic excitations in field theory [4].  

In the one-dimensional static case, the ϕ⁴ equation reduces to the second-order nonlinear boundary value 

problem: 

²
    ³,

²

d

dx


 = −  

( ) ( )  1,       1.L L − = − =  

This formulation admits an exact analytical solution: 

( )   ,
2

x
x tanh

 
=  

 
 

Which smoothly interpolates between the two vacuum states  and , and is often used as a benchmark for 

validating numerical methods [5]. 

Traditional numerical approaches for solving such nonlinear differential equations include finite 

difference methods (FDM), spectral methods, and finite element methods (FEM) [6-8]. While FDM is 

easy to implement, it often lacks the accuracy needed to capture sharp transitions inherent in kink 

solutions. Spectral methods offer exponential convergence for smooth problems but can be sensitive to 

domain boundaries and require global basis functions, resulting in dense system matrices [9, 10]. FEM 

provides flexibility in handling complex domains but may still require mesh refinement to resolve steep 

gradients. 

Cubic B-splines offer a compromise between local support, high-order smoothness, and ease of 

implementation [11, 12]. These functions are widely used in approximation theory, computer-aided 

design, and numerical PDEs. Their compact support leads to sparse system matrices, while their continuity 

ensures smooth representation of derivatives, a crucial property for solving second-order differential 

equations [13]. 

Recently, hybrid methods that integrate B-spline approximation within a Galerkin framework have gained 

attention due to their ability to handle nonlinearity with improved stability and accuracy [14-16]. The 

Hybrid Cubic B-Spline (HCS) method combines the strengths of B-spline interpolation and the variational 

principles underlying FEM to produce a method that is both accurate and efficient. Such methods have 
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been successfully applied to Bratu-type problems [17], reaction-diffusion systems [18], and Burgers' 

equation [19]. 

The motivation for using the HCS method in this study is driven by its ability to produce smooth, accurate 

approximations of nonlinear solutions while preserving computational efficiency. The local support of the 

B-spline basis also makes the method amenable to sparse matrix techniques, which reduce computational 

cost and storage requirements [20]. 

In this work, we develop a numerical scheme based on the HCS method to solve the static ϕ⁴ equation. 

The main contributions are: 

1. A complete derivation of the weak form of the ϕ⁴ equation using Galerkin’s method. 

2. The incorporation of cubic B-spline basis functions to discretize the solution space. 

3. Newton-Raphson iteration for solving the resulting nonlinear system. 

4. Error analysis based and maximum norm comparisons with the exact solution. 

Each component of this study is supported by existing literature on variational methods [21], spline theory 

[11], and nonlinear solvers [22, 23]. Through this approach, we aim to demonstrate that the HCS method 

provides a robust and accurate framework for solving nonlinear boundary value problems like the ϕ⁴ 

equation. 

Beyond the formulation and numerical strategy, particular attention must be paid to the robustness and 

convergence behaviour of the proposed method when applied to strongly nonlinear regimes. Since the ϕ⁴ 

equation introduces significant nonlinearity through the cubic term in the potential, even minor numerical 

artifacts can lead to instability or loss of accuracy in conventional schemes. In contrast, the hybrid B-

spline approach exhibits superior resilience against such difficulties due to its high smoothness and 

compact support, effectively mitigating oscillations and promoting stability without requiring excessively 

fine discretization [24, 25]. 

Moreover, the Newton-Raphson iterative solver employed in this work is particularly well-suited for the 

ϕ⁴ model’s nonlinear structure. By incorporating the exact Jacobian of the residual function within the 

iteration scheme, convergence is accelerated, and computational effort is reduced [26, 27]. Coupling this 

solver with the hybrid cubic B-spline representation ensures that both the spatial and nonlinear 

characteristics of the system are treated with a high degree of fidelity. 

An integral part of this investigation also involves quantifying the deviation between numerical and 

analytical solutions. To this end, various error metrics, including maximum norm and 
2L -norm errors, are 

computed. These metrics not only provide a benchmark for performance but also highlight the practical 

efficacy of the HCS method across varying grid resolutions and boundary conditions [28, 29]. 

1.1    Fractional Derivative with Caputo-Fabrizio Kernel 

In recent developments in fractional-order modeling, the Caputo-Fabrizio (CF) fractional derivative has 

become prominent due to its non-singular exponential kernel and ability to represent systems with fading 

memory. Unlike the traditional Caputo or Riemann-Liouville formulations, the CF operator ensures better 

numerical stability and is more consistent with physical applications involving damping or diffusion in 

complex media [30].   

For a continuously differentiable function f (t), the Caputo–Fabrizio derivative of order 0 1  is defined 

as [30-32]  
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0
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 

 
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− − 
  

This operator has found extensive applications in modeling anomalous diffusion, viscoelasticity, and wave 

propagation in non-conservative media. Incorporating this derivative into the nonlinear 4 model 

facilitates the exploration of time-fractional behavior in kink-type field transitions, especially under non-

equilibrium conditions [31, 32]. 

2. Mathematical Formulation 

To incorporate memory effects into the classical 4  model, we consider the time-dependent form of the 

equation with a Caputo–Fabrizio fractional derivative in time. The time-fractional 4 equation takes the 

form: 

2
3

2
( , ) ( , ) ( , ), [ , ],   0, 0 1   CF

tD x t x t x t x L L t
x

 
   


= + −  −   


 

Here, the term ( , )CF

tD x t  denotes the Caputo–Fabrizio fractional derivative in time, which accounts for 

the hereditary behaviour of the system. The initial and boundary conditions are given by: 

0( ,0) ( ) tanh , ( , ) 1, ( , ) 1
2

x
x x L t L t   

 
= = − = − = 

 
 

This formulation allows us to study the impact of fractional dynamics on the evolution of kink solutions 

in nonlinear field theory. 

2.1. Weak Formulation of the Time-Fractional φ⁴ Equation 

Let 
1

0( ) ( )v x H   be a test function satisfying the homogeneous boundary conditions. Multiplying the 

fractional 4 equation by v(x) and integrating over the spatial domain, we get: 

2
3

2
( , ) ( ) ( )

CFL L

t
L L

D x t v x dx v x dx
x

  
  

− −

 
= + − 

 
   

Applying integration by parts to the second derivative term and assuming vanishing boundary values of 

v(x): 

3( , ) ( ) ( ) ( )
CFL L L

t
L L L

v
D x t v x dx dx v x dx

x x

  
  

 − − −
= − + −    

Substituting the Caputo–Fabrizio derivative definition: 

( )
31

0

1
( , ) ( ) ( ) ( )

1

t sL t L L

L L L

v
x s e ds v x dx dx v x dx

s x x




  

 
   

− −
−

− − −

 
= − + − 

− 
      
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3.     Hybrid Cubic B-Spline Basis Functions 

3.1    Domain Discretization 

Let the interval  ,  a b be divided into N equal subintervals with nodes
1,  ,  ...,  o nx x x .  Here, 20N =

uniform elements were chosen, balancing accuracy and computational efficiency.  

We define a uniform knot vector 
it that supports the definition of B-splines. 

Cubic B-splines are piecewise polynomial functions of degree 3 and have local support over four 

consecutive intervals. The Cox-de Boor recursion formula defines the B-spline functions:  

,0
1

1,                           

0,                       
( )i

i it x t

otherwise
B x = +





 
    , 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

, , 1

11 1 1, 1
                  

     /     *

          

  

  /       *    

i ii k i k i k

ii k i k i k

B x x t t t B x

t x t t B x

+ −

++ + + + + −

= − − +

− −
 

For k = 1, 2, 3 in the case of cubic B-splines.  

These basis functions are used to approximate the unknown function φ(x) as: 

( ) ( )
1

        

n

j jh

j

x c B x
=

=   

Where jc are the unknown coefficients, and ( )jB x are the cubic B-spline basis functions. The local 

support of the basis functions results in a banded stiffness matrix, improving computational efficiency. 

3.2    Hybrid Galerkin Formulation 

To solve the nonlinear equation, we apply the Galerkin method using the B-spline basis both as trial 

functions and test functions. 

We multiply the differential equation by a test function ( )v x span jB and integrate over the domain: 

( ) ( )
²

    ³     0
²

 d
v x dx

dx


 


− − =

 
 

  

Using integration by parts on the second derivative term: 

( ) ( )         ³    
d dv

dx v
x d

x d
x

x
d


 − =



  
  
 

−
   

If v(x) vanishes at boundaries or satisfies homogeneous conditions, the boundary terms vanish. The weak 

form is thus: 

( )( ) ( ) ( )    / /    ³      0d dx dv dx dx v x dx  + − =   

Substituting the approximation ( ) ( )        h j jx c B x =   and choosing ( )  ,iv B x= the system becomes: 
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( ) ( ) ( )( ) ( )( ) ( ) '  '       ³         0   j i j j j j ij B x B x dx c B x c B x B x dxc +  −  =    

This leads to a nonlinear algebraic system of equations for jc , which we solve using iterative techniques. 

3.3.    Derivation of the Weak Form 

The weak (variational) formulation is a foundational step in applying the finite element and spline-based 

methods like the Hybrid Cubic B-Spline (HCS) approach. We start from the strong form of the static Phi-

4 equation: 

²
    ³,

²

d

dx


 = −    In    ,  a b =  

With Dirichlet boundary conditions: 

( ) ( )  ,      a ba b   = =  

Let v(x) be a test function from a suitable space (e.g., H₀¹ (Ω)) that vanishes at the boundaries. Multiply 

both sides by v(x) and integrate over the domain: 

( ) ( ) ( ) ( )² / ²        ³    d dx v x dx v x dx  = −   

To lower the order of derivative on φ, apply integration by parts: 

2

²
 ( )  * ( )   

b

a

d d d dv
v x dx v x dx

dx dx dx dx

      
= −    

       

Since ( ) ( )    0v a v b= = , the boundary term vanishes: 

2

²
 ( )    

d d dv
v x dx dx

dx dx dx

   
= −   

     

The weak form becomes: 

( ) ( )    ³     0
d dv

dx v x dx
dx dx


 

   
+ − =   

      

Find φ ∈ V such that: 

( ) ( )    ³     0      
d dv

dx v x dx v V
dx dx


 

   
+ − =     

      

Where V is the space of admissible test functions (typically H₀¹(Ω). 

Approximate φ(x) as: 

( ) ( )        h j jx c B x =   
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And take ( ) ( )  .iv x B x=  The weak form becomes a nonlinear algebraic system in .jc  

4.    Numerical Implementation 

The Hybrid Cubic B-Spline (HCS) method was implemented using MATLAB for efficient computation 

of the nonlinear static φ⁴ boundary value problem. The computational domain was discretized into N 

uniform subintervals, and the corresponding cubic B-spline basis functions were constructed using the 

Cox-de Boor recursion formula. The assembly of the stiffness matrix was carried out by applying the 

Galerkin formulation, where both the trial and test functions were chosen from the cubic B-spline basis. 

The physical domain was defined on  2,  2−  and discretized with uniform elements. The B-spline basis 

functions were chosen of order 4.k =  

The resulting nonlinear algebraic system was solved iteratively using the Newton-Raphson method. An 

exact Jacobian of the residual function was derived and incorporated into the iteration scheme, 

significantly improving convergence rates. The Dirichlet boundary conditions were enforced directly by 

modifying the system matrix and load vector according to standard finite element techniques. These 

Dirichlet conditions were directly derived from the analytical kink solution, with left boundary 

2
( ) tanh

− 
− =  

 
2

2
 and right boundary 

2
( ) tanh .

 
=  

 
2

2
 

The convergence criterion for the Newton-Raphson solver was defined by a relative residual tolerance of 

10⁻⁸. Numerical experiments were conducted with different mesh sizes to study the accuracy, stability, 

and efficiency of the method. All computations were performed on a standard personal computer, 

demonstrating the practical feasibility of the HCS scheme for nonlinear problems of this type. 

5.    Results and Discussion 

To thoroughly examine the efficiency and reliability of the Hybrid Cubic B-Spline (HCS) method in 

solving the static φ⁴ boundary value problem, the computational domain was partitioned into two 

segments. The first segment, extending from -5 to -2, explores the tail region of the kink solution, where 

the field approaches its vacuum state. This region is particularly important for understanding how well the 

numerical method captures the asymptotic behavior of the solution away from the central transition. The 

second segment, from -2 to 2, includes the core of the kink, where the solution undergoes a rapid transition 

between two stable vacuum states. This interval is critical for assessing the method's capability in 

resolving steep gradients and nonlinearities inherent to the φ⁴ model. For both subdomains, the same 

numerical strategy was employed: constructing cubic B-spline basis functions over uniform meshes, 

assembling the stiffness matrix, applying Galerkin's method, and solving the nonlinear system using the 

Newton-Raphson iteration. The boundary conditions for each segment were derived directly from the 

analytical solution to ensure consistency. Graphical results and numerical tables were generated for each 

interval to compare the numerical approximation against the exact kink solution. The results over 

 5,  2− −  show excellent alignment with the theoretical profile, particularly in capturing the smooth decay 

towards the vacuum state. Similarly, the results over  2,  2− confirm that the HCS method effectively 

resolves the sharp transition zone with minimal error. The combination of these two segments provides a 

comprehensive validation of the proposed method across both the asymptotic and central regions of the 

solution. To validate the proposed method, three sets of graphical results are prepared. 

Subdomain 1: Results for φ⁴ on  5,  2− − . 
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Figure 1: Exact Solution Plot 

This shows the analytical kink solution of the static φ⁴ equation across the chosen domain, illustrating the 

smooth transition between the two vacuum states. 

 
Figure 2: Hybrid Cubic B-Spline Numerical Solution 

 
Figure 3: Comparison Plot 
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Figure 4: 3D Surface Plot of Exact Solution over  5,  2− −  

 
Figure 5: 3D Surface Plot of Hybrid Cubic B-Spline Solution over  5,  2− − . 

 
Figure 6: 3D Comparison Plot of Exact vs Numerical for  5,  2− − . 
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Table 1:  Comparison between Exact and Hybrid Cubic B-Spline Method by interval 

X Exact Hybrid B-Spline |Error| 

-5.00 -0.998 -0.998 0.00e+00 

-4.85 -0.998 -0.998 3.26e-07 

-4.70 -0.997 -0.997 1.18e-05 

-4.55 -0.997 -0.997 1.16e-05 

-4.40 -0.996 -0.996 3.19e-05 

-4.25 -0.995 -0.995 4.80e-05 

-4.10 -0.994 -0.994 7.32e-05 

-3.95 -0.993 -0.992 6.80e-05 

-3.80 -0.991 -0.991 8.42e-05 

-3.65 -0.989 -0.988 1.08e-04 

-3.50 -0.986 -0.986 1.49e-04 

-3.35 -0.983 -0.982 1.87e-04 

-3.20 -0.979 -0.978 2.63e-04 

-3.05 -0.974 -0.973 3.51e-04 

-2.90 -0.967 -0.967 2.73e-04 

-2.75 -0.960 -0.959 4.56e-04 

-2.60 -0.951 -0.950 3.25e-04 

-2.45 -0.939 -0.938 1.01e-03 

-2.30 -0.926 -0.925 4.34e-04 

-2.15 -0.909 -0.908 8.75e-04 

-2.00 -0.888 -0.888 0.00e+00 

Interval Subdomain 2:  Results for φ⁴ on  2,  2−  

 
Figure 7: Exact Solution Plot 
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Figure 8: Hybrid Cubic B-Spline Numerical Solution 

Presents the numerical approximation obtained using the HCS method. The figure highlights how well 

the spline-based solution follows the nonlinear profile of the kink. 

 

 

Figure 9: Comparison Plot 
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Figure 10: 3D Surface Plot of Exact Solution over  2,  2− . 

 

Figure 11: 3D Surface Plot of Hybrid Cubic B-Spline Solution over  2, 2− . 
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Figure 12: 3D Comparison Plot of Exact vs Numerical for  2, 2− . 

Overlays the exact solution and the HCS numerical solution on the same graph to visualize the agreement 

between the two. This demonstrates the method’s ability to capture sharp transitions with high accuracy. 

In addition to the graphical results, a comparison table was constructed to show the numerical values of 

the solutions at selected nodal points along with the associated error metrics.  

Table 2: Comparison between Exact and Hybrid Cubic B-Spline Method for  2,  2−   

X Exact Hybrid B-Spline |Error| 

-2.00 -0.888 -0.888 0.00e+00 

-1.80 -0.855 -0.855 6.50e-04 

-1.60 -0.811 -0.812 3.85e-04 

-1.40 -0.757 -0.758 1.15e-03 

-1.20 -0.690 -0.691 3.10e-04 

-1.00 -0.609 -0.609 1.21e-05 

-0.80 -0.512 -0.511 7.79e-04 

-0.60 -0.401 -0.402 1.03e-03 

-0.40 -0.276 -0.277 1.13e-03 

-0.20 -0.140 -0.141 5.99e-04 

 0.00  0.000 -0.000 1.25e-15 

 0.20  0.140  0.141 5.99e-04 

 0.40  0.276  0.277 1.13e-03 

 0.60  0.401  0.402 1.03e-03 

 0.80  0.512  0.511 7.79e-04 

 1.00  0.609  0.609 1.21e-05 
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 1.20  0.690  0.691 3.10e-04 

 1.40  0.757  0.758 1.15e-03 

 1.60  0.811  0.812 3.85e-04 

 1.80  0.855  0.855 6.50e-04 

 2.00  0.888  0.888 0.00e+00 

This confirms that the HCS method provides a consistent and accurate approximation of the analytical 

solution even on extended domains. 

6.    Conclusion 

The analysis was conducted over two distinct subdomains:  5,  2 :− −  to capture the asymptotic behavior 

of the kink solution, and  2,  2−  to examine the core transition region. This dual-domain strategy allowed 

for a robust validation of the HCS method’s capability in approximating both the smooth decay and the 

steep transition of the φ⁴ kink solution with high precision. 

The numerical experiments demonstrated excellent agreement with the analytical kink solution, with low 

error norms and strong convergence behaviour. The method efficiently handled the nonlinearities 

associated with the 4  equation, showing superior stability and resilience compared to traditional schemes. 

The incorporation of Newton-Raphson iterations further improved convergence rates and reduced 

computational costs. 

Given these promising results, the HCS method represents a valuable tool for solving similar nonlinear 

boundary value problems in applied mathematics and physics. Future research may explore its application 

to higher-dimensional field equations or to time-dependent variants of the 4  model, further extending its 

capabilities and impact. The chosen mesh and domain, specifically  2,  2− with 20,N = demonstrated 

effective resolution of the nonlinear kink without excessive computational cost.  The dual-domain analysis 

enhances confidence in the HCS method's ability to model nonlinear field transitions accurately.  
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