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Abstract 

In this article, approximate solutions of Time-Fractional Diffusion 

Wave Equation has been investigated using a hybrid cubic B-spline 

technique with finite difference scheme. For the discretization of time 

fractional derivative Caputo-Fabrizo formula is employed. To get the 

numerical out comes the Caputo-Fabrizo fractional derivative and a 

hybrid cubic B-spline strategy is delved. The presented method is 

proved to be unconditionally stable with a second order convergence. 

The proposed scheme is validated using some test problems, 

demonstrating its feasibility and reasonable accuracy. Numerical results 

show that the applied method is efficient and computationally economic 

in solving the time-fractional Diffusion Wave Equation. 
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1. Introduction 

Fractional calculus (FC) studies differentiation and integration of fractional orders. This field has gained 

popularity in recent decades. A brief discussion on this topic is presented in [1,2]. FC is respected for its 

many scientific and engineering uses. FC is used in control theory [3], viscoelastic flow [4], continuum 

mechanics [5], tumor growth modeling [6], transport phenomena [7], random walk analysis [8], turbulence 

studies [9,10], coronavirus research [11,12] and the analysis of dynamical systems [13,14]. Fractional 

integrals and derivatives can express the memory and genetic properties of many materials and processes, 

especially those affected by irregular diffusion, according to several academics [15,16]. Fractional partial 

differential equations (FPDEs) sometimes indicate fractional problems more precisely than integer-order 

approximations. However, most FPDEs cannot be solved accurately. Thus, a lot of research article has 

focused on numerical solutions to these difficulties. This study will explore (TFDWE) with damping and 

reactivity variables to find numerical solutions for various circumstances. 

 

y (a, t ) =1 (t ),         y (b, t ) = 2 (t ),                                        (3) 

 

where  and  are coefficients of the damping and reaction terms, respectively. q(v, t)  is the 

source term and 𝑦𝑡(𝑣, 𝑡0) is a differentiable function of 𝑦(𝑣, 𝑡) for time t at t = t0. The fractional 

 

In the Equation (4) R( )  refers to the normalization operator and satisfies that R R (0) (1) 1 = = . Where 𝛼 

is the fractional derivative and shows the behavior of the equation, it means when 𝛼 = 1 Equation (1) becomes 

the diffusion equation, 0 < 𝛼 ≤ 1 Eq turns to the fractional diffusion equation or sub-diffusion equation. When 

𝛼 = 2 it becomes a wave equation and 1 < 𝛼 ≤ 2 then the equation becomes a fractional wave equation. 

1.1 Literature Review 

The idea of fractional calculus emerged when differentiation and integration were applied to groups that were 

not integers. Fractional derivatives explain memory, engineering and physical system inheritance better than 

integer-order differentiation. Du et al [17] investigated fractional differentiation in response to L'Hôpital's 

issue. However, Kilbas et al [18] developed a strong mathematical framework for it, which advanced the 

area. The use of Caputo-Fabrizio fractional derivative has been studied in several articles. An analytical 

formula for the Gaussian-based CFFD, which focuses on the application in signal processing, has been 

developed by [19]. 

 y (v,t ) 

t
 

+  
y (v,t ) 

t 
+ y (v,t ) − 

2 y (v,t ) 
 

 

v2 
= q (v,t ),  (1, 2], v a,b, t t0,T , (1) 

With initial conditions (ICS): 
 

y (v, t0 ) = 1 (v), 

 

yt (v, t0 ) = 2 (v), 

 

 

(2) 
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When dealing with nonlinear and nonhomogeneous cases, it is important to observe that FDWE does not 

have closed-form solution. Popular methods like Laplace transform, Green's function, Fourier order, 

eigenfunction expansion and separation of variables cannot correctly solve many fractional partial differential 

equations in many physical phenomenon. As a result, approximate numerical techniques are necessary to 

address such issues. 

Numerous research articles have explored various numerical techniques for solving TFDWE. In recent years, 

researchers have developed many numerical methods to solve (TFDWE). Ding & Li 

[20] proposed two computational methods for addressing TFDWEs with reaction terms. Avazzadeh et al [21] 

solved TFDWE using radial basis functions. Khader & Adel [22] introduced an algorithm based on Hermite 

formulas for fractional wave equations (FWEs). Chatterjee et al 

[23] developed a method using Bernstein polynomials to solve nonlinear TFDWEs. Hooshmandasl et al [24] 

applied Legendre wavelets to address slow diffusion in fractional order and fractional diffusion wave 

equation in temporal direction. Ali et al [25] used an implicit difference technique to compute solutions for 

TFDWEs. F. Zhou & Xu [26] applied Chebyshev wavelets collocation technique to explore TFDWE. 

For the time fractional diffusion-wave model, one conditionally stable finite difference scheme and two 

second-order stable schemes are suggested by Zeng [27]. Fundamental solutions to the fractional-order 

diffusion-wave problem have been found by Pskhu [28]. TFDWE under Neumann boundary-value 

constraints in a half-plane have been studied by Povstenko [29]. 

Ren and Sun [30] solved the multi-term time fractional diffusion-wave issue numerically efficiently using a 

compact finite difference technique with fourth-order accuracy. Sweilam et al [31] used the Crank-Nicolson 

finite difference approach to tackle the diffusion problem in time fractional order. Fractional diffusion-wave 

equations were solved using a unique iterative method by Daftardar-Gejji and Bhalekar [32]. Garg and 

Manohar [33] have used the matrix approach to produce a numerical solution of the fractional diffusion-wave 

equation with two spatial variables, while Khader [34] has written an article on the numerical solution for the 

fractional diffusion equation. The wavelets technique for the TFDWE was suggested by Heydari et al [35]. 

A TFDWE with reaction effect and estimated results are found in this study using an effective numerical 

scheme based on (HCBS) functions. The Caputo derivative in time fractional order is first discretized using 

the standard finite difference formula and then spatial derivatives are approximated using the θ-weighted 

scheme and (HCBS). Because of their minimal support and 𝐶2 continuity, (HCBS) functions offer more 

accuracy than standard finite difference techniques. The results obtained from numerical experiments are 

compared with those of [22] and [36]. The technique discussed in [22] has accuracy of 10-5 , while the given 

scheme has an accuracy up to 10-9 and 10-10 , according to the comparison. It is demonstrated that the proposed 

technique is stable unconditionally. The presented scheme's convergence analysis is also covered. The 

algorithm's effectiveness and accuracy are validated by numerical experiments. 

This paper's outline is as follows. In Section 2, Preliminaries and HCBS function is presented. The numerical 

scheme of TFDWE using Hybrid Cubic B-spline is described in section 3 and in section 4 and 5 stability and 

convergence is stated respectively. In section 6, the efficiency and stability of the scheme and results are 

discussed. Concluding remarks are discussed in the last section. 

2. Preliminaries 

Definition 1. If h   L
2 

[a, b], then PI is defined as [37]: 
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The Fourier transform for all numbers 𝑚 is shown by hˆ(m) = 
b 

h (v) 𝑒2𝜋𝑖𝑚𝑣𝑑𝑣 
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The values of S4
r (v) and its derivatives at v= vr are given by 

 
3. Description of numerical scheme 

 

 
Hence 
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Substituting (8) in (16), we get 
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This is the matrix representation of Equation (20): 

T90=D,                                                          (21) 

Where 
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Eq (21) can be handled using any numerical approach for 90. 

4. The stability of the presented scheme 

It is safe to say that the numerical method is steady if the error doesn't get bigger while the calculation is 

being done [40]. To examine the stability of the specified scheme, Fourier analysis is used. Let  n and  n 

are analytical and numerical representations of the expansion variables, 

respectively. The error  nr is shown 

 

From Eq. (19) we obtain 

 
 

Where 
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Implementing . 2  norm, we attain 

 

Using Perceval’s identity (5), we achieve 

 

Hence we get 

 

Assume that the expressions (22)-(24) gives the solution in Fourier form as: 

 

Where i and √-1is any real number. Substituting (29) in (22) and dividing by eiprh 
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Lemma 4.1 

 

Theorem 1. The method presented in (19) is stable unconditionally. 

Proof: By using Eq (28) and Proposition 4.1, we attain 

 

As a result, the proposed computational approach is always and unconditionally stable. 

5 Convergence 

The convergence of the proposed method is examined using the technique described in [41]. The 

following theorem is first introduced as [40][41] 

 

connected by a single spline  Y (v, t) at vr   , then for every 𝑡 ≥ 0 , there is a number  r 

not related to h such that for r = 0, 1, 2, we get 
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Theorem 3: The numerical solution 𝑌(𝑣,𝑡) exists for the exact solution 𝑦(𝑣,𝑡) concerning TFDWE 

(1)-(3). Moreover, if 𝑞 belongs to C2 [0, 1], then 

 

 

Utilizing Theorem 2 for 𝑟 = 0, we achieve 

 

There are collocation conditions in the current method. 

 

 

The BCs can be given as 

 
Where 

 
and 

 
From inequality (29), we achieve 
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Hence, for all n, we acquire 

 

In particular, 

 

Therefore, from Lemma 5.1 and inequality (37), we get 

 

Using (38), the inequality (35) becomes 

 

Where 

 

Theorem 4  The TFDWE converges with initial conditions and boundary conditions.  

Proof. Let us consider the numerical and estimated results for TFDWE are y(v, t) and Y (v, t) , respectively. 

Consequently, the previously mentioned theory and relation (12) verify the presence of constants  and F 

and F such that 

 

Consequently, the suggested technique exhibits quadratic convergence. 
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6. Numerical Experiments 

Numerical results from trials by utilizing the suggested method are shown in this section. We use the 

error norms L2 and L as a means of evaluating the accuracy of the proposed method as in [45].  

 

Moreover, the Experimental order of convergence (EOC) is computed as in [46] 

 

By doing so R( ) = 1, Mathematica 12 is used to perform numerical computations on an Intel(R) Core 

(TM) i5-3437U CPU running at 1.90GHz and 2.40GHz with 12.0 GB of RAM, an SSD, and a 64-bit 

operating system (Windows 10). 

Example 6.1 
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Table 1: Comparison of maximum error at different values of h, t when  = 1.5 and 

t = 0.2 for example 1 

h t HF [22]  = 1.5 Present Method 

0.2 0.02 0.01149 6.410 10−4 3.219110−6 

0.1 0.01 0.00361 8.20310−5 6.407310−7 

0.05 0.006 0.00120 1.027 10−5 2.331810−7 

0.03 0.006 0.00115 3.049 10−6 9.4654 10−8 

0.03 0.005 0.00021 3.03510−6 5.322810−8 

0.025 0.005 0.00019 1.28110−6 3.0147 10−8 

0.025 0.0047 0.00006 1.280 10−6 8.8916 10−9 

0.02 0.0045 0.00004 8.989 10−7 4.375110−9 

The findings are given for  = 1.5 and t = 0.2 in Table 1. The results demonstrate that the maximum error 

related to the suggested approach dramatically drops as the mesh is fine-tuned, or as h and t decrease. 

For example, when ℎ = 0.02 and t = 0.0045 , the suggested approach obtains the maximum error of 

the order 10−9 , which is less than the error in [22] and [36]. This implies that even with minor grid 

improvements, the proposed strategy improves accuracy. 

Table 2: The maximum error at different values of h, t when  = 1.7 and t = 0.4 for example 1. 

h t HF [22] CuTBSM [36] Present Method 

0.1 0.02 0.01396 2.490 10−4 4.0376 10−6 

0.05 0.01 0.01064 3.11310−5 5.2260 10−7 

0.03 0.005 0.00736 9.17810−6 8.3124 10−8 

0.02 0.004 0.00653 1.982 10−6 6.003510−8 

0.02 0.003 0.00586 1.980 10−6 5.982110−8 

0.01 0.0025 0.00494 1.149 10−6 3.488810−9 

0.01 0.0022 0.00460 1.44310−6 6.0094 10−10 

0.014 0.0020 0.00443 7.202 10−7 4.8107 10−10 
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Table 3: Example 1's error norms and order of convergence for various N when 

 

N L2 Norm L Norm EOC 

10 2.935510−4 3.1950 10−4 
 

20 8.7109 10−5 9.045110−5 1.8681 

40 2.212810−5 2.477810−5 1.3654 

80 5.9376 10−6 9.7562 10−6 1.9777 

In Table 2, when we increased the  at time t = 0.4 the maximum error began to decrease with finer grids. 

The maximum error of order 10-10 which is smaller than mentioned methods. 

In Table 3, L2 and L  error norms along with the observed spatial order of convergence are discussed, for 

Example 1 when N is increased gradually and the time step size t = 
1

120
  is fixed. 

The fractional order is taken as  = 1.5 . The table shows that mesh refinement enhances scheme 

correctness by decreasing both error norms as N increases. Moreover, as N rises, the anticipated order of 

convergence gets closer to 2. As an example, the calculated order is around between and stays extremely 

close to 2 in further revisions. 

 

t L2 Norm L Norm 

0.2 4.3007 10−9 7.463110−9 

0.4 5.911110−8 8.2947 10−8 

1.0 2.4189 10−8 4.093310−8 

2.0 3.6484 10−7 5.2149 10−7 

Similarly, in Table 4 L2 and L are discussed with different time levels when the spatial step size h =
1

60
 

, time step t =
1

120
 and  =1.5 . This table shows as 𝑡  increases, both error norms started  

increasing. Because fractional derivatives include memory effects, this gradual increase in inaccuracy over 

time is common in fractional differential equations. However, the error remains within reasonable bounds, 

indicating that the system maintains precision and stability across long simulation durations. 
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Figure 1 displays the graphs of the exact and approximate solutions for a range of values of  , h and t 

over different time periods. Excellent coordination among the solutions is displayed in the graphs. Figure 

2 illustrates the absolute error trends at several time points, highlighting the method's great accuracy. It 

has been observed that our approach achieves much higher accuracy. The three-dimensional graphs of the 

exact and estimated solutions at time t = 0.1 are contrasted in Figure 3. 

 

Figure 1: Numerical (stars, bullets) and exact solutions (solid lines) at various time levels when 

h = 
1 

, t = 
80 

1 

100 
and  = 1.75 for Example 1. 

 

Figure 3: Three-dimensional comparison of exact (left) and numerical (right) solutions with 

h = 
1 

, t = 
64 

1 

100 
and  = 1.5 at t = 1 of Example 1. 
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Example 2 

 

 

Table 5: Absolute error for different values of  , v with t = 0.01 of Example 2. 

v  = 1.1  = 1.3  = 1.5  = 1.7  = 1.9 

0 2.7304510−15 3.0531110−16 7.56339 10−16 2.03327 10−14 6.24510−15 

0.1 1.31839 10−14 1.34059 10−14 1.5640310−14 3.2612810−14 5.2069510−14 

0.2 2.45082 10−14 2.3925310−14 2.3980810−14 2.5229810−14 2.4702510−15 

0.3 3.21687 10−14 3.1169510−14 3.0225810−14 3.32234 10−14 2.9698510−15 

0.4 3.64986 10−14 3.5332810−14 3.40006 10−14 3.71092 10−14 9.2426110−15 

0.5 3.78586 10−14 3.66929 10−14 3.5194110−14 3.6415310−14 2.20934 10−14 

0.6 3.6359810−14 3.5221810−14 3.4028310−14 3.47510−14 2.1316310−14 

0.7 3.21132 10−14 3.1169510−14 3.0059310−14 3.08364 10−14 1.91236 10−14 

0.8 2.4813510−14 2.41196 10−14 2.33147 10−14 2.41196 10−14 1.70697 10−14 

0.9 1.4252510−14 1.38917 10−14 1.34476 10−14 1.4155310−14 1.0186310−14 

1 3.4694510−18 0 3.4694510−18 3.4694510−18 0 
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Table 6: Absolute error for different values of  , v with t = 0.1 of Example 2. 

v  = 1.1  = 1.3  = 1.5  = 1.7  = 1.9 

0 4.59702 10−16 2.54657 10−15 2.15626 10−15 5.7558110−15 1.7173810−15 

0.1 2.8807810−9 2.8261310−9 2.7629 10−9 2.68110−9 2.57447 10−9 

0.2 5.0213510−9 4.91777 10−9 4.79769 10−9 4.64184 10−9 4.43884 10−9 

0.3 6.4977 10−9 6.35567 10−9 6.1906810−9 5.97609 10−9 5.6961510−9 

0.4 7.36274 10−9 7.19622 10−9 7.00249 10−9 6.75017 10−9 6.42064 10−9 

0.5 7.6476510−9 7.4227310−9 7.26912 10−9 7.003810−9 6.6571310−9 

0.6 7.36274 10−9 
 

7.19622 10−9 
7.00249 10−9 6.75017 10−9 6.42064 10−9 

0.7 6.4977 10−9 6.35567 10−9 6.1906810−9 5.97609 10−9 5.6961510−9 

0.8 5.0213510−9 4.91777 10−9 4.79769 10−9 4.64184 10−9 4.43884 10−9 

0.9 2.8807810−9 2.8261310−9 2.7629 10−9 2.68099 10−9 2.57447 10−9 

1 6.93889 10−18 3.4694510−18 6.93889 10−16 3.4694510−18 0 

Figure 5 shows the graphs of the exact and approximate solutions. A great degree of agreement exists 

between the exact and approximate solutions. Figure 6 (N = 60, t =  0.01) plots the absolute error profile 

at various time levels to demonstrate the scheme's accuracy. By establishing the values of various 

parameters, Figure 7 displays the 3D plot of the estimated and exact solutions. There are a lot of 

similarities between the solutions. It is evident from Figure 7 and Table 5-6 that the suggested approach 

is highly precise and effective. For many values of  , it is important to observe that the numerical solutions 

link quite well with the exact solutions. 
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7. Conclusion 

This study dealt with the challenge of identifying approximate results to time-dependent fractional partial 

differential equations (FPDE). B-splines were employed to formulate a collocation approach for TFDWE to 

accomplish this objective. The spatial derivative was discretized using Hybrid Cubic B-splines, and the time 

fractional derivative was approximated using standard FDM. 

Analyzing the approximated solutions of TFDWE, an efficient numerical approach that takes reaction and 

damping components into account has been presented. Together with CFFD, we have used the θ-weighted 

approach and HCBS functions. The proposed technique shows quadratic temporal and spatial convergence 

and is unconditionally stable. We have looked at two numerical issues. The suggested approach is both 

accurate and computationally effective, as seen by the comparison of the numbers and graphics. We might 

investigate higher-dimensional and variable- order fractional partial differential equations in the future for 

numerical solutions by Hybrid-based Spline functions.  
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