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Abstract

In this article, approximate solutions of Time-Fractional Diffusion
Wave Equation has been investigated using a hybrid cubic B-spline
technique with finite difference scheme. For the discretization of time
fractional derivative Caputo-Fabrizo formula is employed. To get the
numerical out comes the Caputo-Fabrizo fractional derivative and a
hybrid cubic B-spline strategy is delved. The presented method is
proved to be unconditionally stable with a second order convergence.
The proposed scheme is validated using some test problems,
demonstrating its feasibility and reasonable accuracy. Numerical results
show that the applied method is efficient and computationally economic

in solving the time-fractional Diffusion Wave Equation.
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1. Introduction

Fractional calculus (FC) studies differentiation and integration of fractional orders. This field has gained
popularity in recent decades. A brief discussion on this topic is presented in [1,2]. FC is respected for its
many scientific and engineering uses. FC is used in control theory [3], viscoelastic flow [4], continuum
mechanics [5], tumor growth modeling [6], transport phenomena [ 7], random walk analysis [8], turbulence
studies [9,10], coronavirus research [11,12] and the analysis of dynamical systems [13,14]. Fractional
integrals and derivatives can express the memory and genetic properties of many materials and processes,
especially those affected by irregular diffusion, according to several academics [15,16]. Fractional partial
differential equations (FPDEs) sometimes indicate fractional problems more precisely than integer-order
approximations. However, most FPDEs cannot be solved accurately. Thus, a lot of research article has
focused on numerical solutions to these difficulties. This study will explore (TFDWE) with damping and
reactivity variables to find numerical solutions for various circumstances.

o* N 2
%ﬂv)ﬂb Qy—gi)wy(v,t)_ aya_g”): g(wt), o (1,2, ve[ab]. t[w.T], (1)
With initial conditions (ICS):
y(n)=o1(v),  y(t)=m(v), @
yv(at)=yi(t),  y(bt)=y2(t), 3)

where ¢ and y are coefficients of the damping and reaction terms, respectively. g(v,f) 1is the
source term and y#(v, to) is a differentiable function of y(v, t) for time ¢ at ¢t = #Q. The fractional

-~

derivative is in the form of Caputo-Fabrizio — y(v,7) is described

-~ -7

R(a) ¢ &
¥ ’r [ =
y(v.1) 2_H£A__
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(v, 2)exp| ———(f—=z2) |dz 4
= ¥(3.2) 1{ T )} @)
In the Equation (4) R( ) a refers to the normalization operator and satisfies that R R (0) (1) 1 ==. Where a
is the fractional derivative and shows the behavior of the equation, it means when a = 1 Equation (1) becomes
the diffusion equation, 0 < a <1 Eq turns to the fractional diffusion equation or sub-diffusion equation. When
a =2 it becomes a wave equation and 1 < a < 2 then the equation becomes a fractional wave equation.

1.1 Literature Review

The idea of fractional calculus emerged when differentiation and integration were applied to groups that were
not integers. Fractional derivatives explain memory, engineering and physical system inheritance better than
integer-order differentiation. Du et al [17] investigated fractional differentiation in response to L'Hopital's
issue. However, Kilbas et al [18] developed a strong mathematical framework for it, which advanced the
area. The use of Caputo-Fabrizio fractional derivative has been studied in several articles. An analytical
formula for the Gaussian-based CFFD, which focuses on the application in signal processing, has been
developed by [19].
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When dealing with nonlinear and nonhomogeneous cases, it is important to observe that FDWE does not
have closed-form solution. Popular methods like Laplace transform, Green's function, Fourier order,
eigenfunction expansion and separation of variables cannot correctly solve many fractional partial differential
equations in many physical phenomenon. As a result, approximate numerical techniques are necessary to
address such issues.

Numerous research articles have explored various numerical techniques for solving TFDWE. In recent years,
researchers have developed many numerical methods to solve (TFDWE). Ding & Li

[20] proposed two computational methods for addressing TFDWEs with reaction terms. Avazzadeh et al [21]
solved TFDWE using radial basis functions. Khader & Adel [22] introduced an algorithm based on Hermite
formulas for fractional wave equations (FWESs). Chatterjee et al

[23] developed a method using Bernstein polynomials to solve nonlinear TFDWEs. Hooshmandasl et al [24]
applied Legendre wavelets to address slow diffusion in fractional order and fractional diffusion wave
equation in temporal direction. Ali et al [25] used an implicit difference technique to compute solutions for
TFDWEs. F. Zhou & Xu [26] applied Chebyshev wavelets collocation technique to explore TFDWE.

For the time fractional diffusion-wave model, one conditionally stable finite difference scheme and two
second-order stable schemes are suggested by Zeng [27]. Fundamental solutions to the fractional-order
diffusion-wave problem have been found by Pskhu [28]. TFDWE under Neumann boundary-value
constraints in a half-plane have been studied by Povstenko [29].

Ren and Sun [30] solved the multi-term time fractional diffusion-wave issue numerically efficiently using a
compact finite difference technique with fourth-order accuracy. Sweilam et al [31] used the Crank-Nicolson
finite difference approach to tackle the diffusion problem in time fractional order. Fractional diffusion-wave
equations were solved using a unique iterative method by Daftardar-Gejji and Bhalekar [32]. Garg and
Manohar [33] have used the matrix approach to produce a numerical solution of the fractional diffusion-wave
equation with two spatial variables, while Khader [34] has written an article on the numerical solution for the
fractional diffusion equation. The wavelets technique for the TFDWE was suggested by Heydari et al [35].

A TFDWE with reaction effect and estimated results are found in this study using an effective numerical
scheme based on (HCBS) functions. The Caputo derivative in time fractional order is first discretized using
the standard finite difference formula and then spatial derivatives are approximated using the 6-weighted
scheme and (HCBS). Because of their minimal support and C2 continuity, (HCBS) functions offer more
accuracy than standard finite difference techniques. The results obtained from numerical experiments are
compared with those of [22] and [36]. The technique discussed in [22] has accuracy of 10~ , while the given
scheme has an accuracy up to 10 and 1071 according to the comparison. It is demonstrated that the proposed
technique is stable unconditionally. The presented scheme's convergence analysis is also covered. The
algorithm's effectiveness and accuracy are validated by numerical experiments.

This paper's outline is as follows. In Section 2, Preliminaries and HCBS function is presented. The numerical
scheme of TFDWE using Hybrid Cubic B-spline is described in section 3 and in section 4 and 5 stability and
convergence is stated respectively. In section 6, the efficiency and stability of the scheme and results are
discussed. Concluding remarks are discussed in the last section.

2. Preliminaries

2
Definition 1. If he L [a,b], then Plis defined as [37]:

it =Ll ©
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~ b
The Fourier transform for all numbers m is shown by 4 (m) =I h (v) e2mimvdy

2.1 Hybrid Cubic B-spline function
Considera = vy < 1y < - < vy = b compnse the division of [a, b] corresponding with 1t at the
nodes . = vy +rh.r=0,1,23 ...N, where h = ?. The defimition of a Hybrnid Cubic B-spline

function 15 as Where

u(v, )= sin(v ;v’ ], glv,)= sin[v’;v} w = sin[g]sin{h]sin[%Jand be R . Where b 1s a free

parameter which controls the nature of Eq. (6). HCBS reduces to Cubic Trigonometric B-Spline
(CTBS) when b =0 and if b =1 then 1t reduces to Cubic B-Spline (CBS). The CBS 1s
geometrically invanant, convex, symmetric, dividing unity, and non-negative [38]. Furthermore,

5_1,50,.. 5n+1 have also been formulated. For y(v,f), Regarding HCBS, the approximation
Y(v.t) can be thought of as [39].

-, 3 1—-5b
W(V—‘)") +7u3(vr) ve[vr"’rbl]
6?13 {h3 +3n°(v—v,_ )+3h(v—v, ) —3(v—v”,)3} vel[v,.,.v,..]
1 1-5 i
L+ 7 {u("’r)(u(‘)r )q(vr-LZ) == q(v.--;z )l‘(vrfl)) Tk q(‘)r+4)u-(vrbl)}
S} = b : . {h3 +3n° (v, s —V)+3h(v,. ., —V) —3(v —v)l} ve [v v ]
r 6h3 ) 6h3 r+3 r+3 r+3 r+2°> Yr43

1—-5b6 >
+—— {9 (MDD + GO, DU(,.2)) + ()G (v,.0)

1-56

%(V_"r)z'*' w’(v,) velv,.s:Va)

0 otherwise

(6)

The approximate solution 1s

N+l

¥(n1)= 3.8 (1)S: (¥): ™)

r=—1

At each stage of time, control points & {I] need to be found. At the nodal points, equations (6)
and (7) give us the following close approximations:

V(1) =(Y), = 48+ 8, + 48

Y (v0)=(Y,), =48, +08 +2,9, ®)

¥ (1) =(Y,), = 48, + A8, + 18

r+l
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The values of S* (v) and its derivatives at v= v, are given by

b (A cec| 2
A = E+{]—‘-Er]&-m [E}msec{h)cusec( > ]

—Eﬂ]—b];
3 1+ 2 cos(h)
b 3 h
i ,5.4{ J} A, ——(ﬂ+{]—b]zmsec{—}]
dv A, =(2;:+{1 b}%cusec[—])
3(1+3cos(h *(h!2
I Aﬁ=£1+(1—b} { +3cos(h)cosec”( ]}
ﬂr_q‘h]:ﬁ i 16(2cos(h/ 2)+cos(3h/2))
dv: * 2b 3cos”(h/2)cosec (h/2)
A= +(1-b)
(2-}- 4GGS{h}] {g]

3. Description of numerical scheme
Take the range [0, 7] and divide it into M equal parts of size At = '7 using the grid points 0 =

Y|

to <ty <+ <tpy=T, where t, =nAt,n=0,1,2 ..., M. Here's how to describe the CFFD of
TFDWE at t = ts+1 as

(o R(a)¢ &
oz Y Vol = ﬁ—) }’(",:)exp[-zi(fn-r:)]dz
-a

a- 2
(10)
R a
S == I ~ _y(v. ')eXP[-—(tM. :)}dz
=0 o OZ 2
Using forward difference approach, Eq (10) becomes
~a) > $(rten) =20 ( L )+y(hta) J exP{— = e :)]d: + @7
2—a s={) (A[)- 0 2—(1
R(a) a N o nat
= =| 1 —exp(———Ar) Z[y(v. t_.)=2y(vt,_)+y(vit, . )exp(— sAt)+ D7
a(At) 2-a v 2t
Hence
a“ nR(ce .
00, = TS [0t ) =230t ) )] O (11)
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-+

“ Af)and k, =exp(— sAr) Moreover the truncation error®)’ is

Where m=1-=exp(-
! Pl 22— 2—a o

given as

|| < Fag? (12)

Where F is a constant. It can be checked that

= k. >0andk;=1,5s=0123....,n,
» kg2 ky k=2 k. k. - 0as5 — oo,

- 2(":: _'k'r-rl):(l_kl}-‘-i(k: _'k.'r-rl]+ku:]"

=l

Using (11) and #-weighted scheme, Eq (1) becomes

zfi:;} g[ﬁ; (vt ) =2y(vat, )+ p(vt, )]+ i[}f{m )= y(vt,)] (13)
+0[wy(v,t, )=y, (vt N+ A=) [wy(v.) -y, (v.2 )] =g(v1,.,)
Discretizing (13) for 8 = 1, we get
(£+dy +y)y™" —(20+,)y7 + Oy
(14)

Ok =2y T =) =g, =01, N
5=l

Where { = #R(@) i :i, " =y(v..t Yand g"" = g(v_.t_,,). It has been found that the term y~*

alAryY T At
- -1
occurs when n = 5 or n = 0. To get rid of ¥~ , after solving this y" = VR we use initial
']
condition to get
yi=y -2Mw,(v). (15)

When we use the HCBS estimate and its essential derivatives at node v, in Eq (14), then

(C+¢, +y)X —(Y)"

- 16
=(2( +¢o)),rn _[y'n—l _(Zk‘[yrn—.nl __2Y'n—s + Y'n—x—|]+q;nl ( )
s=]
Substituting (8) in (16), we get
(L +dy+) (A8 + 48 + 487 ) - (A8 + 2,87 + 4,97
=20 +¢,) (A9, + 43" + 49, ) - (497 + A9 + 4,97
(17)
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Y kST A RS AT <248 4 AT+ 48T
s=1

TR NN K e PP

[{f+¢a+w}i1 —ﬁ-_a]-i".*.l +[{f+¢a +r ) A, —ﬂ“]SJ"” +[(f’+¢a +w}ﬂ1—i§]r5'f;‘
=20+ )[4, + S + 49, |- (A9 + L9 + 487

n (18)
(Y kIAS 4 8 4 A8 <248 + AT+ 49T
5=
+2].g:.|_-j.:—l +H':.g:|—5—|. + ’?1*9,!';|’_J]+E}:H
[{f +@, +w)d, —iE]S:_'l] +[(!.'+|;25" +)A, —j.ﬁ]S:'J +[(f+|;25" +W )4, - 25].9:.’_]'
=(20+4)|[ 49", + 4,9 + 48 |- (495 + 97 + 4,97
(19)

Y kAT -2+ I (T =287 48
5=1

+A1(Sﬂ‘—jf| —23"-’ + .gu—.:—l]+q::|fl

r+l r+l r+l

The values of 4,,4,, 4 1s given in (9). This system (19) is made up of N + 1 linear equations and
N + 3 unknowns. The boundary conditions (3) are used to get two extra equations that are needed
to make the system consistent. So, a matrix system with dimensions (N + 3) x (N + 3) is created,
and it can be solved in a single way using any suitable method. Before using (19), the initial vector

$ =[%.9),....9.,] is achieved through the ICs as

(Y\)(r) =aw/(v,), r=0,
¥)Y =a,(v,), r=0,L,....,N, (20)
()]n)f’) = a)ll(vr )’ = N’

This is the matrix representation of Equation (20):

T9°=D, 21
Where
EX o A4, i [ &/ (v) ]
Y Ay @, (Vo)
S T @, (%)
Ti= - - and D = :
A A 4 @, (Vy_y)
A A A4 @, (vy)
| A, 0o A, | | (V) |
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Eq (21) can be handled using any numerical approach for 9°.
4. The stability of the presented scheme

It is safe to say that the numerical method is steady if the error doesn't get bigger while the calculation is
being done [40]. To examine the stability of the specified scheme, Fourier analysis is used. Let ¢" and¢”

are analytical and numerical representations of the expansion variables,
respectively. The error " is shown

B =7-7, r=lL..N-1 n=01...M
From Eq. (19) we obtain
[(c+@, +u)A — A8 +[(C+ @y +w) A, — A B +[(£+ ¢, + )4 — 4] B
=20 +g ) A8+ B+ AL |- (MBS + BT + 4B

—fi k4B =28 + B+ LB =287+ ) e
FRBT 2B+ B g
From ICs and BCs, we can write
Bl =a(v), (B =), r=1.23...N (23)
And
Bl = (t). Bl=w.(t) n=01..M (24)

The grid function is stated as:
B, I’E{I'r—g.ur+g], r=2,.,N-1.
B = (25)

h h
0, vela,a+—] or velb——_h]
: [ 2] [ 2 1

The #"(v) in the Fourier mode can be presented as:

Fr)= Y ume =, (26)
Where
l b —2wimv
" (m) = b__[ﬂ"(V)e 23 dv. a=0L2 . Mand B =[B" ;BB X 27)
—d
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Implementing” || 2 norm, we attain

N1 =
o7l = (a1

N[ =

4 ] V3
a+5 5 ..\'_l ll,_+5 5 b "
— J’ |,6"|'dv+z J' |,3"|‘ dv + J' |,6"|‘dv
a S e -
T 2

N~

- -
(et )
\a

Using Perceval’s identity (5), we achieve

" 2
JlB7| av= 2 | (m)|
Hence we get
I = 3 || @)

A =—an

Assume that the expressions (22)-(24) gives the solution in Fourier form as:
Bl = (29)
Where i and V-1is any real number. Substituting (29) in (22) and dividing by ™

[{r—‘l‘% +l_|ff},?_1 _J:LS]‘CI'"“E_”“ +[(r+¢"+w}j.l_)1n]#ﬂ+l +[(r+¢a +W}J;|1 _j.s]‘“ui-lf.'pﬁ
=l g)[Ape ™ ot + dpir e | (g A e A )

" (30)
_{ij[ﬂl{#ﬂ-nle-mﬁ _E#M-J:E-.'M + #u-s-le-lpk] + A:{#u-srl _ 2‘”"-: + #N-J-L}
s=]
+2—1(‘£rll'f—lel|l1lll _zlﬂ,u—xflpk +Ju.|v—:'-lflpk]
- . i Y e
Utilizing the relation cos(ph) = — and simplifying, we get
4] W & A
Jl‘.ﬂ‘f| — {]- + jt}#n _glﬂlu—l —22.&:{‘““_’_' _2#5'—.: +l|”u—.l:—l} (3 I.]
=l

: 2
and o =1+ 2cos(ph)wh” —6) +4ph” +12

Where H = 5 -
f+;#u (Th +¢ﬂﬁ'}[2cm{pﬁ}+4}

.Obviouslyo =1
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Lemma 4.1

If the answer to Eq. (31) is ", then |u"| < (1+%R)|¢°|,n=0,1,...., M.
Proof: We employed the induction method to prove this lemma. Put n = 0 in the Eq. (31)

|,u'|=(l+Tm)ly°|S(l+‘)?)|p° , o=1.

Assume that |;1"| <1+ ‘.R)Iyo

, for n=12......, M —1.then

n+l (1 + 9{) al.. E n—1| g < n—s+1
1]« L - B | - B S [ A

1+ N)? RA+N RA+N) &
s i e W | U B P B

2|

e |#n—-s—l

1

£

= a+_9”[1 +‘:R—‘J{]|y°
(22
|,u"+'| <@ +§R)|,u°|.
Theorem 1. The method presented in (19) is stable unconditionally.

Proof: By using Eq (28) and Proposition 4.1, we attain

|

n=0,1,.... M.

, <A+

500
As aresult, the proposed computational approach is always and unconditionally stable.

5 Convergence

The convergence of the proposed method is examined using the technique described in [41]. The
following theorem is first introduced as [40][41]

Theorem 2 Let g is connected to C’[a,b] and y(v,t) is associated to C*[a,b]also subdivision of
[a.b]lis Y ={a=v,.v,,....v, =b}withv, =a+rh, r = 0,1,2, ..., N. If the curve of the solution is

connected by a single spline Y (v,f)at v, €Y, then for every t = 0 , there is a number
not related to h such that forr =0, 1, 2, we get

D (p(v0) T << h* (32)

Lemma 5.1 The HCBS set {S .§,,......5,_,} in (6) fulfils the inequality as given in [44]

N+l
SIS, v)|= % D<v=l, (33)

r=—1
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Theorem 3: The numerical solution Y (v,t) exists for the exact solution y(v,t) concerning TFDWE

(1)-(3). Moreover, if q belongs to C? [0, 1], then

(v, 1) — F{111i'_}|L < ;f}r:, v =0, (34)

- N+l
Proof: Let Y(v,t)= Zx;’(t)Sr(v) be the estimated HCBS forY(v,#). By applying the triangle

r=-1

inequality, we obtain
@0 =Y., <|y.)=F,0)|_ +|F(n0-Y(.0)|
Utilizing Theorem 2 for r = 0, we achieve

vty =Y <&k +[Fvan) - Y(v,r}"r. . (35)

There are collocation conditions in the current method.
Ly(v ,t)=LY(v,,t)=q(,,t), r =0,1,..., N. Consider
LY(v,.0) =q(,.0).
Therefore, the difference equation L( Y(v,,t)-Y(v,, t)) can be expressed at temporal level n as

[(C+a,+w)A = A )OS +[(C+d, + ) dy — A4 ]O +[(C+ dy +w)A, — A | T,
= (20 +¢,) [ A0, + LU, + A7, |- (407 + 40 + 407

r+l
I AP NS¢ S s Tl BV (6 Ll § St & A (36)
s=]

+A O 20 U )+ ;3 &

r+l

The BCs can be given as

A0™ + 6™ 40 =0, r=0,N

r r+l1

Where

O"=9"-x", r=-10,..,N+1

and

er=hlar—q. ) »=0y..;N
From inequality (29), we achieve

gl|=hlg -g 1< Ch'.
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and " = max When n=0and using the equation (15),

O<r=N

Define¢” = max

O<r=N

<;
r

no__ n
e =[O

n
e’|.

Equation (36) transforms into

[4(d, +¥) = 4]0, +[ (8, +¥) = 4]0, +[ 4 (4, +v) - 4]0,

LI
h2 gr

=& (2“162—1 + 4,0, + 407, ) +
Wherer = 0,1, ..., N. Using IC, e’ =0

1
h2

[L(2 +¥)— 4]0, =—[A( + W) — AL (O, + T, D+ <,

Taking the magnitude of ©3!.<) and small value of %, So

L 3¢h"

e <— 5 = FEN.
W (¢ +y)+12

BCs provide the values ofée', and e}, _, :

‘ 15¢h*
e, S ee———————
1 (d +y)+12
4
g TN
h (¢, +y)+12
Which implies

e < h,
Where £, is independent of & . Now, this theorem is proved via mathematical induction. Suppose

that €' < ¢ h° is true for 1<u<n and{ =max{{, :u=0,1,...,n}. subsequently, using Equation

(33), we obtain

[A(+d, +9) = 2,07 +[ AL+ +p)+22,]O7 +[4(L+4, +p) - 2,]O

=20+ — (k) (AT, + A0+ AT, )~ [k, — 2k + k)] (AT + A0 + 4T

Fal
e, =2k, + k(AT + AT+ AT )k, — 2k, + k(AT + AU+ AT )+
et ke, s =2k, vk, V(AT + A0+ A0 )+ (k, . — 2k, +k (A0, + 40, + 405, )

ko (AT + AT A0 )~k (AT + AT+ AT )+ e

Again, taking the modulus of 3" and "' | we get
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3}72 2 < 2 2 2
fHt g 20+@,—Lk)Sh () (k,,—2k,+k, )Sh™+k,Ch” +{h™ |-
er hg({+¢0 +l//)+ 12 {( +¢0 l): Z( s-1 s s+l)§ + né, él :I

s=1

n+l n+l

Similarly, after applying the BCs, we get the values ofe”|” and e},

n+l 154 ; , 2 e 2 2 2
< 2( —Llk)Sh™ — L) (k,_,—2k, +k h™+(k,Ch 'l
e—l hz((+¢0 +W)+12[( +¢0 l)é, ZI:( 5—1 s s+1 )é’ & ng +g
And
< 15h” QC+¢ —lk )ghz—f"z_l:(k 2k +k )CH + Lk Ch:+Ch .
N+l — hz([+¢o+.//)+12 (V] M | % e s—1 s s+l S ]

Hence, for all n, we acquire

-+

e < h. (37)
In particular,
. N+l
Fu0)=¥(v,0) = ¥ (x,(1) - 8.(1)S,(v). (38)
r=-1
Therefore, from Lemma 5.1 and inequality (37), we get
. 5 .
||}’{~.=,r) ~¥(v, r)||, < i.gh- . (39)
Using (38), the inequality (35) becomes
5 2 - i
[y(v.)=¥(w.)|, < <h* +3Ch=Ch,

Where
et 2 5
4’ — é’oh~ +§é’

Theorem 4 The TFDWE converges with initial conditions and boundary conditions.

Proof. Let us consider the numerical and estimated results for TFDWE are y(v, t) and Y (v, t) , respectively.
Consequently, the previously mentioned theory and relation (12) verify the presence of constants { and F
and F such that

ly(v. ) =Y (v, 0)|| < <h® + F(Ar)>.

Consequently, the suggested technique exhibits quadratic convergence.
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6. Numerical Experiments

Numerical results from trials by utilizing the suggested method are shown in this section. We use the
error norms Lo and L as a means of evaluating the accuracy of the proposed method as in [45].

L = ||_1'(vr._,r} ~Y{v.1)

|’" - :].!;]r:a:,}: |}I(vr a f} - }’(Vr El f}

And

L= "}'{Vrﬁf] - Y{v,,r}|

= J};i y(v,,0) =¥ (v,.0)[" .

Moreover, the Experimental order of convergence (EOC) is computed as in [46]
lug[ : (231} ]
EOC= __\L.CGn))
log(2)

By doing so R(a ) = 1, Mathematica 12 is used to perform numerical computations on an Intel(R) Core
(TM) i5-3437U CPU running at 1.90GHz and 2.40GHz with 12.0 GB of RAM, an SSD, and a 64-bit
operating system (Windows 10).

Example 6.1
c yv,1)= a v,y +gvia),  (v1) €[0,1]x[0,T7].
i/ Y '
(40)
wiv,0)=0, ¥, (v,0) ==sin(Tv),

o) =p(L1)=0,

267" sin(v)

Where the source term is g(v,1) =
rG3-a)

+(r" —f)sin{xv)x’. The exact solution to the given

problem is y(v,f) =sin(zv){(¢* —1)[22].
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Table 1: Comparison of maximum error at different values of h, A when o =1.5 and
t=0.2 for example 1

h At HF [22] a =15 Present Method
0.2 0.02 0.01149 6.410x10™* 3.2191x10°°
0.1 0.01 0.00361 8.203x107° 6.4073x1077
0.05 0.006 0.00120 1.027x107°  [2.3318x10~7
0.03 0.006 0.00115 3.049x1076 9.4654x108
0.03 0.005 0.00021 3.035x10°° 5.3228x107®
0.025 0.005 0.00019 1.281x107° 3.0147x10°8
0.025 0.0047 0.00006 1.280x10°° 8.8916x10~°
0.02 0.0045 0.00004 8.989x10~7 4.3751x107°

The findings are given for o =1.5and t = 0.2 in Table 1. The results demonstrate that the maximum error
related to the suggested approach dramatically drops as the mesh is fine-tuned, or as h and At decrease.
For example, when h = 0.02 and At = 0.0045, the suggested approach obtains the maximum error of
the order 10~°, which is less than the error in [22] and [36]. This implies that even with minor grid
improvements, the proposed strategy improves accuracy.

Table 2: The maximum error at different values of 4, At when o =1.7 and t = 0.4 for example 1.

h At HF [22] CuTBSM [36] |Present Method
0.1 0.02 0.01396 2.490x10~* 4.0376x107¢
0.05 0.01 0.01064 3.113x107° 5.2260x1077
0.03 0.005 0.00736 9.178x10°° 8.3124x1078

0.02 0.004 0.00653 1.982x10°° 6.0035x10~*

0.02 0.003 0.00586 1.980x10° 5.9821x10°®
0.01 0.0025 0.00494 1.149x107°° 3.4888x107
0.01 0.0022 0.00460 1.443x107°° 6.0094 %1071

0.014 0.0020 0.00443 7.202 %1077 4.8107 x1071°
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Table 3: Example 1's error norms and order of convergence for various N when

A o =1.5

N L, Norm L, Norm EOC
10 2.9355x10~* 3.1950x10™*

20 8.7109x107° 9.0451x107° 1.8681
40 2.2128x107° 2.4778x107° 1.3654
80 5.9376x10°° 9.7562x10°° 1.9777

In Table 2, when we increased the o at time t = 0.4 the maximum error began to decrease with finer grids.
The maximum error of order 107'° which is smaller than mentioned methods.

In Table 3, Lr and L, error norms along with the observed spatial order of convergence are discussed, for

Example 1 when N is increased gradually and the time step size At = Flo is fixed.

The fractional order is taken as o = 1.5 . The table shows that mesh refinement enhances scheme
correctness by decreasing both error norms as N increases. Moreover, as N rises, the anticipated order of
convergence gets closer to 2. As an example, the calculated order is around between and stays extremely
close to 2 in further revisions.

Table 4: Error norms when A7 = é a=135.h= % at different time levels for Examplel.

t L2 Norm Lo Norm

0.2 4.3007 x10° 7.4631x107°
0.4 5.9111x107® 8.2947x107®
1.0 2.4189x1078 4.0933x10°8
2.0 3.6484x1077 5.2149x1077

Similarly, in Table 4 L, and L, are discussed with different time levels when the spatial step size h =6—10

, time step At T;o and o =1.5 . This table shows as t increases, both error norms started

increasing. Because fractional derivatives include memory effects, this gradual increase in inaccuracy over
time is common in fractional differential equations. However, the error remains within reasonable bounds,
indicating that the system maintains precision and stability across long simulation durations.
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e t=0.75

» t=02

x A t=05
[

=020 |

=025 |

Figure 1: Numerical (stars, bullets) and exact solutions (solid lines) at various time levels when

h=_,t= 1 and o =1.75 for Example 1.
80 100

7.x107°F
6.x107° F

— 1=0).4
5.x10°°F

e 1=0D
4.x107°F t=0.2
3.x107°F — =]
2.x107° F

— t=0.6
1.x 107

0.2 04 0.6 0.8 1.0

Space~Time graph of exact solution at t=1

Space—Time graph of Approximate solution at t=1

Figure 3: Three-dimensional comparison of exact (left) and numerical (right) solutions with
1
h=_,Ar=_1 and o. =1.5at # =1 of Example 1.
64 100

Figure 1 displays the graphs of the exact and approximate solutions for a range of values of oo, 4 and ¢
over different time periods. Excellent coordination among the solutions is displayed in the graphs. Figure
2 illustrates the absolute error trends at several time points, highlighting the method's great accuracy. It
has been observed that our approach achieves much higher accuracy. The three-dimensional graphs of the
exact and estimated solutions at time t = 0.1 are contrasted in Figure 3.
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Example 2

[id

afl'l

y(v,0)=0,

y(v.t)+ pv.e) =

-F

at

y0,1)=v(L1) =0,

Where the source term is g(v,f)=

problem is y(v,t) =t"v(1-v).

— y(v.1) +qlv.1),
ml

¥, (v, ﬂ.} =0,

2071 =v)
I'3i—a)

(v.1) [0, 1]=[0.T].

APPLICATION OF A HYBRID

(41)

+1"v(1=v)+2t" . The exact solution of given

The suggested approach is used to tackle this issue. Table 5-6 shows the absolute errors at various

pointsy e[0,1] for values @chosen from the rangel <& =2. At different time levels with

a=15Ar=00land ¢r=1for N =80. The findings demonstrate the method's stability and

dependability by showing that the absolute error stays consistently low across all tested values of.

Table 5: Absolute error for different values of o., vwith At=0.01 of Example 2.

v a=1.1 o=1.3 o=1.5 a=17 o=1.9

0 2.73045x1071 3.05311x1071¢ 7.56339 %1071 |2.03327x107*  |6.245x1071
0.1 1.31839x107™ [1.34059x10°*  [1.56403x10°*  |3.26128x10'*  [5.20695x10
0.2 2.45082 %107 [2.39253x10°*  {2.39808x10~"*  [2.52298x10~"*  [2.47025x10~"
0.3 3.21687x107*  [3.11695%x107'4 3.02258x10°'*  |3.32234 %107 [2.96985x10°"3
0.4 3.64986 x107'*  [3.53328x10°'*  [3.40006x107'*  |3.71092x10"*  [9.24261x10°"°
0.5 3.78586x107*  13.66929 x107*  |3.51941x10™" 3.64153x107"*  [2.20934 10"
0.6 3.63598x107*  |3.52218x107"*  [3.40283x107'4 3.475x10714 2.13163x107'4
0.7 3.21132x107"  [3.11695x10™*  {3.00593x10™*  [3.08364x107*  [1.91236 x107*
0.8 2.48135x107*  [2.41196x107*  [2.33147x107*  |2.41196x107*  [1.70697 x10~'
0.9 1.42525%107"* [1.38917 x107#  [1.34476 x10™'*  [1.41553x10~" 1.01863x107'4
1 3.46945%x1078 0 3.46945x107"%  [3.46945x10°'* |0
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Table 6: Absolute error for different values of oo, v with A7 =0.1 of Example 2.

o=1.1

a=1.3

a=1.5

a=1.7

o=1.9

4.59702x10°'¢

2.54657 x10°1

2.15626x107"

5.75581x1071

1.71738x1071

0.1

2.88078x107°

2.82613x107°

2.7629 x10~°

2.681x107°

2.57447x107°

0.2

5.02135%x10™°

4.91777 x107°

4.79769 x107°

4.64184x107°

4.43884x107°

0.3

6.4977 x10~°

6.35567x107°

6.19068x10~°

5.97609 x10~°

5.69615x107°

0.4

7.36274x107°

7.19622 %107

7.00249 x107°

6.75017x107°

6.42064 x107°

0.5

7.64765%107°

7.42273x107°

7.26912x107°

7.0038x10~°

6.65713x107°

0.6

7.36274x107°

7.19622 x107°

7.00249 x107°

6.75017 %107

6.42064 x107

0.7

6.4977 x10~°

6.35567x107°

6.19068x10~°

5.97609 %10~

5.69615x107°

0.8

5.02135%x10~°

491777 x107°

4.79769 x10™°

4.64184x107°

4.43884x107°

0.9

2.88078x10~°

2.82613x107°

2.7629 x10~°

2.68099 x10™°

2.57447 x107°

6.93889 x10°'8

3.46945x107'8

6.93889 x1071¢

3.46945x107'8

0

Figure 5 shows the graphs of the exact and approximate solutions. A great degree of agreement exists
between the exact and approximate solutions. Figure 6 (N =60, At = 0.01) plots the absolute error profile
at various time levels to demonstrate the scheme's accuracy. By establishing the values of various
parameters, Figure 7 displays the 3D plot of the estimated and exact solutions. There are a lot of
similarities between the solutions. It is evident from Figure 7 and Table 5-6 that the suggested approach
is highly precise and effective. For many values of a., it is important to observe that the numerical solutions
link quite well with the exact solutions.

[l ] o & EY

LS =

i i
L L8

i
0.2 0.4

Figure 5: Comparison of approximate and exact solutions for Example 2
with 1 = (0.75 (circles), t =1 (stars) and & =10.5, t = (.5 (triangles) N =80, Ar =0.01.
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0.00002 =

0.000015

w— 1=0.75

— =]

0.00001

— 1=0.5

5.x107°

L 1 1 L
0.2 0.4 0.6 08 1.0

Figure 6: Distribution of Error at different time levels for Example 2 when N =60,Af=0.01.

Figure 7: 3D space-time graphs for exact (right) and numerical (left) solutions of Example 2.

7. Conclusion

This study dealt with the challenge of identifying approximate results to time-dependent fractional partial
differential equations (FPDE). B-splines were employed to formulate a collocation approach for TFDWE to
accomplish this objective. The spatial derivative was discretized using Hybrid Cubic B-splines, and the time
fractional derivative was approximated using standard FDM.

Analyzing the approximated solutions of TFDWE, an efficient numerical approach that takes reaction and
damping components into account has been presented. Together with CFFD, we have used the 8-weighted
approach and HCBS functions. The proposed technique shows quadratic temporal and spatial convergence
and is unconditionally stable. We have looked at two numerical issues. The suggested approach is both
accurate and computationally effective, as seen by the comparison of the numbers and graphics. We might
investigate higher-dimensional and variable- order fractional partial differential equations in the future for
numerical solutions by Hybrid-based Spline functions.

pg. 123



KJMR VOL.02 NO. 06 (2025) APPLICATION OF A HYBRID

REFERENCES
[1] B. Ross, “Fractional calculus,” Math. Mag., vol. 50, no. 3, pp. 115-122, 1977.

[2] I Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications. elsevier, 1998.

[3] R. Hilfer, Applications of fractional calculus in physics. World scientific, 2000.

[4] K. Diethelm and A. D. Freed, “On the solution of nonlinear fractional-order differential equations
used in the modeling of viscoplasticity,” in Scientific computing in chemical engineering II:
computational fluid dynamics, reaction engineering, and molecular properties, Springer, 1999, pp.
217-224.

[S] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics.
Springer, 1997.

[6] A. H. Bokhari, A. H. Kara, and F. D. Zaman, “On the solutions and conservation laws of the model
for tumor growth in the brain,” J. Math. Anal. Appl., vol. 350, no. 1, pp. 256— 261, 2009.

[7] I M. Sokolov, J. Klafter, and A. Blumen, “Fractional kinetics,” Phys. Today, vol. 55, no. 11, pp. 48—
54,2002.

[8] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics
approach,” Phys. Rep., vol. 339, no. 1, pp. 1-77, 2000.

[9] I M. Sokolov, J. Klafter, and A. Blumen, “Ballistic versus diffusive pair dispersion in the Richardson
regime,” Phys. Rev. E, vol. 61, no. 3, p. 2717, 2000.

[10] W. Chen, “A speculative study of 2/ 3-order fractional Laplacian modeling of turbulence: Some
thoughts and conjectures,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 16, no. 2, 2006.

[11] D. Baleanu, H. Mohammadi, and S. Rezapour, “A fractional differential equation model for the
COVID-19 transmission by using the Caputo—Fabrizio derivative,” Adv. Differ. equations, vol. 2020,
no. 1, p. 299, 2020.

[12] S. Kumar, J. Cao, and M. Abdel-Aty, “A novel mathematical approach of COVID-19 with non-
singular fractional derivative,” Chaos, Solitons & Fractals, vol. 139, p. 110048, 2020.

[13] M. Ali Dokuyucu, E. Celik, H. Bulut, and H. Mehmet Baskonus, “Cancer treatment model with the
Caputo-Fabrizio fractional derivative,” Eur. Phys. J. Plus, vol. 133, pp. 1-6, 2018.

[14] M. A. Khan, Z. Hammouch, and D. Baleanu, “Modeling the dynamics of hepatitis E via the Caputo—
Fabrizio derivative,” Math. Model. Nat. Phenom., vol. 14, no. 3, p. 311, 2019.

[15] T. H. Solomon, E. R. Weeks, and H. L. Swinney, “Observation of anomalous diffusion and Lévy
flights in a two-dimensional rotating flow,” Phys. Rev. Lett., vol. 71, no. 24, p. 3975, 1993.

[16] A. V Chechkin, R. Gorenflo, and I. M. Sokolov, “Fractional diffusion in inhomogeneous media,” J.
Phys. A. Math. Gen., vol. 38, no. 42, p. L679, 2005.

pg. 124



KJMR VOL.02 NO. 06 (2025) APPLICATION OF A HYBRID

[17] Q. Du, J. S. Hesthaven, C. Li, C.-W. Shu, and T. Tang, “Preface to the Focused Issue on Fractional
Derivatives and General Nonlocal Models,” Commun. Appl. Math. Comput., vol. 1, pp. 503-504,
2019.

[18] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential
equations, vol. 204. elsevier, 2006.

[19]J. M. Cruz—Duarte, J. Rosales—Garcia, C. R. Correa—Cely, A. Garcia—Perez, and J. G. Avina—
Cervantes, “A closed form expression for the Gaussian—based Caputo—Fabrizio fractional derivative

for signal processing applications,” Commun. Nonlinear Sci. Numer. Simul., vol. 61, pp. 138-148,
2018.

[20] H. Ding and C. Li, “Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction
Term,” in Abstract and applied analysis, Wiley Online Library, 2013, p. 493406.

[21] Z. Avazzadeh, V. R. Hosseini, and W. Chen, “Radial basis functions and FDM for solving fractional
diffusion-wave equation,” Iran. J. Sci., vol. 38, no. 3, pp. 205-212, 2014.

[22] M. M. Khader and M. H. Adel, “Numerical solutions of fractional wave equations using an efficient
class of FDM based on the Hermite formula,” Adv. Differ. Equations, vol. 2016, pp. 1-10, 2016.

[23] A. Chatterjee, U. Basu, and B. N. Mandal, “Numerical algorithm based on Bernstein polynomials for
solving nonlinear fractional diffusion-wave equation,” Int. J. Adv. Appl. Math. Mech, vol. 5, no. 2,
pp. 9-15, 2017.

[24] M. R. Hooshmandasl, M. H. Heydari, and C. Cattani, “Numerical solution of fractional sub-diffusion
and time-fractional diffusion-wave equations via fractional-order Legendre functions,” Eur. Phys. J.
Plus, vol. 131, pp. 1-22, 2016.

[25] U. Ali, A. Igbal, M. Sohail, F. A. Abdullah, and Z. Khan, “Compact implicit difference
approximation for time-fractional diffusion-wave equation,” Alexandria Eng. J., vol. 61, no. 5, pp.
4119-4126, 2022.

[26] F. Zhou and X. Xu, “Numerical Solution of Time-Fractional Diffusion-Wave Equations via
Chebyshev Wavelets Collocation Method,” Adv. Math. Phys., vol. 2017, no. 1, p. 2610804, 2017.

[27] F. Zeng, “Second-order stable finite difference schemes for the time-fractional diffusion- wave
equation,” J. Sci. Comput., vol. 65, no. 1, pp. 411-430, 2015.

[28] A. V Pskhu, “The fundamental solution of a diffusion-wave equation of fractional order,” 1zv. Math.,
vol. 73, no. 2, p. 351, 2009.

[29] Y. Povstenko, “Neumann boundary-value problems for a time-fractional diffusion-wave equation in
a half-plane,” Comput. Math. with Appl., vol. 64, no. 10, pp. 3183-3192, 2012.

[30] J. Ren and Z.-Z. Sun, “Efficient numerical solution of the multi-term time fractional diffusion-wave
equation,” East Asian J. Applied Math., vol. 5, no. 1, pp. 1-28, 2015.

[31] N. H. Sweilam, M. M. Khader, and A. M. S. Mahdy, “Crank-Nicolson finite difference method for
solving time-fractional diffusion equation,” J. Fract. Calc. Appl., vol. 2, no. 2, pp. 1-9, 2012.

[32] V. Daftardar-Gejji and S. Bhalekar, “Solving fractional diffusion-wave equations using a new
iterative method,” Fract. Calc. Appl. Anal., vol. 11, no. 2, p. 193, 2008.

pg. 125



KJMR VOL.02 NO. 06 (2025) APPLICATION OF A HYBRID

[33] M. Garg and P. Manohar, “Numerical solution of fractional diffusion-wave equation with two space
variables by matrix method,” Fract. Calc. Appl. Anal., vol. 13, no. 2, pp. 191- 207, 2010.

[34] M. M. Khader, “On the numerical solutions for the fractional diffusion equation,” Commun.
Nonlinear Sci. Numer. Simul., vol. 16, no. 6, pp. 2535-2542, 2011.

[35] M. H. Heydari, M. R. Hooshmandasl, F. M. M. Ghaini, and C. Cattani, “Wavelets method for the
time fractional diffusion-wave equation,” Phys. Lett. A, vol. 379, no. 3, pp. 71-76, 2015.

[36] M. Yaseen, M. Abbas, T. Nazir, and D. Baleanu, “A finite difference scheme based on cubic
trigonometric B-splines for a time fractional diffusion-wave equation,” Adv. Differ. Equations, vol.
2017, pp. 1-18, 2017.

[37]J. R. Poulin, Calculating infinite series using Parseval’s identity. The University of Maine, 2020.

[38] N. Khalid, M. Abbas, M. K. Igbal, and D. Baleanu, “A numerical investigation of Caputo time
fractional Allen—Cahn equation using redefined cubic B-spline functions,” Adv. Differ. Equations,
vol. 2020, no. 1, p. 158, 2020.

[39] M. Shafig, M. Abbas, K. M. Abualnaja, M. J. Huntul, A. Majeed, and T. Nazir, “An efficient
technique based on cubic B-spline functions for solving time-fractional advection diffusion equation
involving Atangana—Baleanu derivative,” Eng. Comput., vol. 38, no. 1, pp. 901-917, 2022.

[40] W. E. Boyce, R. C. DiPrima, and D. B. Meade, Elementary differential equations and boundary value
problems. John Wiley & Sons, 2021.

[41] M. K. Kadalbajoo and P. Arora, “B-spline collocation method for the singular- perturbation problem
using artificial viscosity,” Comput. Math. with Appl., vol. 57, no. 4, pp. 650-663, 2009.

[42] C. A. Hall, “On error bounds for spline interpolation,” J. Approx. theory, vol. 1, no. 2, pp. 209-218,
1968.

[43] C. de Boor, “On the convergence of odd-degree spline interpolation,” J. Approx. theory, vol. 1, no.
4, pp. 452-463, 1968.

[44] M. Shafiq, F. A. Abdullah, M. Abbas, A. Sm Alzaidi, and M. B. Riaz, “Memory effect analysis using
piecewise cubic B-spline of time fractional diffusion equation,” Fractals, vol. 30, no. 08, p. 2240270,
2022.

[45] M. Abbas, A. A. Majid, A. I. M. Ismail, and A. Rashid, “The application of cubic trigonometric B-
spline to the numerical solution of the hyperbolic problems,” Appl. Math. Comput., vol. 239, pp. 74—
88, 2014.

[46] I. Wasim, M. Abbas, and M. Amin, “Hybrid B-Spline Collocation Method for Solving the
Generalized Burgers-Fisher and Burgers-Huxley Equations,” Math. Probl. Eng., vol. 2018, no. 1, p.
6143934, 2018.

pg. 126



