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Abstract 

Speech Emotion Recognition (SER) is gaining significant attention in the 

field of human-computer interaction (HCI) over past decade. Specially in the 

fields like health, security, communication, and entertainment. But due to the 

lack of research on how to boost the speech processing efficiency, the current 

emotion recognition systems need improvement and more accuracy. To 

enhance the accuracy, we proposed an Effective Speech Emotion Recognition 

System (ESERS) which is a hybrid approach that uses Autoencoders (AEs) 

for denoising and robust feature extraction with a Self-Attentional 

Convolutional Neural Network–Bidirectional Long Short-Term Memory 

(CNN-BLSTM) architecture for effective temporal and contextual modeling. 

Using CREMA Dataset, we achieved Weighted Accuracy (WA) improved 

from 73.9% to 81.6% and Unweighted Accuracy (UA) increased from 68.5% 

to 82.8%. which shows absolute improvement of 7.7% and 14.3%, and 

relative improvements of 10.4% and 20.9% respectively. Hence, to enhance 

system efficiency, the hybrid approach outperforms traditional approaches 

currently in use. 

  Keywords: 

Speech Emotion Recognition , R-CNN , BLSTM , Deep Learning , Emotion 

Detection , Audio Processing , Neural Networks. 
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Introduction 

As human-computer interaction (HCI) becomes more important in everyday life, it is now more important 

than ever that machines understand human emotions and respond accordingly. Mostly in the recent past, 

people communicate with machines using a command line interface or textual input. Through these 

communication techniques, the emotional part of the conversation is ignored, which is very important in 

driving human behavior. Speech can tell you multiple things about the speaker, like their mental state, 

intentions, and level of engagement. These are very important for natural and intuitive communication. 

But it's still very hard to figure out how a person is feeling from the way of they talk because of different 

speakers, their accents, languages, background noise, and also the fact that people often show their feelings 

in a way that isn't very obvious.  

As machines don't have emotions, systems like virtual assistants, educational platforms and customer 

service bots often respond in a very dull and unsatisfying way. As society moves toward AI systems that 

are smarter and more caring, making machines better at understanding emotions through Speech Emotion 

Recognition (SER) is emerging as a significant research topic. Figure1 shows basic SER System. 

 

Figure 1: Basic Emotion Recognition System 

Recent SER research has significantly embraced CNN–BLSTM architectures, demonstrating their 

strength in capturing spatial as well as temporal features from the speech. There is a study in 2021 that 

introduced Light-SERNet, which is a lightweight fully convolutional network that processes spectrograms 

and achieves high accuracy using the IEMOCAP dataset and the EMO-DB datasets by using only 

convolutional layers [1]. Similarly, the DCNN-BLSTM with attention model proposed by Xu et al. in 

2021, which uses pretrained DCNNs (on ImageNet) for the extraction of segment-level log-Mel features, 

which is followed by BLSTM and attention layers, reports a huge success and gets high accuracies [2]. 

These latest studies are highlighting how hybrid CNN–BLSTM frameworks, especially when used 

together with attention features, transfer learning techniques, or pretrained representations, are currently 

a dominant and effective class of solutions. 

Another prominent trend in the recent literature is the use of data augmentation and multi-channel or 

parallel feature architectures. For example, a 2023 IEEE Transactions study proposed a multichannel 

CNN–BLSTM model that fuses magnitude and phase spectral features (MFCC + MODGD), which is 

enhanced by Deep Canonical Correlation Analysis (DCCA) for feature alignment more accurately, 

achieving improved speaker-independent SER performance. Moreover, there is a 2024 survey by 

Artificial Intelligence Review which reports that if we combine MFCCs, ZCR, spectrograms, chroma and 

augmentation techniques like spectrogram shifting and noise addition, significantly boost CNN + BLSTM 

models—some reaching very high accuracy on databases like TESS, EmoDB and RAVDESS [3]. Parallel 

architectures, which include CNN–BLSTM–Attention networks with multi-fold augmentation, have also 

been proposed to address variable noise and enhance generalization on datasets like RAVDESS. These 
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innovations demonstrate that combining diverse data-augmentation strategies with parallel CNN and 

recurrent modules improves emotion recognition systems' performance as a result. 

 

The representation of audio signals as spectrogram images in speech emotion recognition has enabled the 

use of advanced computer vision techniques, especially CNN-based architectures. However, traditional 

CNNs often face difficulties in identifying small emotional signals within the spectrograms. Recent 

research has focused on Region-based CNNs (R-CNN), which can identify and focus on important 

spectro-temporal regions, improving the emotion-specific feature extraction. When these types of models 

are used with networks like BLSTM, they effectively catch the temporal dynamics and spectral richness 

of the voice signals. For instance, recent research on SER Based on Parallel CNN-Attention Networks 

with Multi-Fold Data Augmentation in 2022 employs a parallel CNN–BLSTM–Attention architecture 

over RAVDESS and reports state-of-the-art performance [4][5]. Complementary techniques, such as 

multi-scale CNN with attention and co-attention fusion of MFCC, spectrogram, and wav2vec2 

embeddings, demonstrate the effectiveness of mixing spatial and sequential modeling to enhance the 

recognition process [5]. As a result, the hybrid R-CNN + BLSTM framework shows significant results for 

real-world, robust and speaker-independent SER systems. 

Dataset and Methodology  

This paper presents a model of Recurrent Convolutional Neural Network (RCNN)-based Effective Speech 

Emotion Recognition (ESER) system, that uses multiple unsupervised learning techniques to improve the 

accuracy of identifying emotions which is speaker-independent. The techniques involve three 

Autoencoders (AE), Denoising AE, Adversarial AE, Variational AE, and Adversarial Variational Bayes 

(AVB). Experiments reveal that feature learning using unsupervised method helps improve ASER 

accuracy when we trained them using CEMA-D dataset, which shows improvements in UAR and also in 

the F1-score. The models, which include Auto encoders and AVB, show more effective performance in 

emotion detection compared to Denoise AE. which proves that the un-supervised learning method using 

these models is a valuable approach for ASER. 

We used 5 different types of data sets in our research to compare the effectiveness and finding the best 

one for our model, firstly we used Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), 

the second dataset is Toronto Emotional Speech Set (TESS), third is The Ryerson Audio-Visual Database 

of Emotional Speech and Song (RAVDESS), fourth is Danish Emotional Speech Database (DES) and the 

last one is Berlin Database of Emotional Speech (EMO-DB). All of their statistics are shown in Table 1 

and the sample distribution throughout the databases is shown in Figure 2. 
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Table 1: Statistics of the databases and their types of emotion. 

 

The presence of a black dot (•) in the cell shows that this specific emotion is available in that dataset. The 

area in the table, which is light gray in color, displays that these emotions are common in all datasets. 

 

Figure 2: Datasets Comparison 

After performing comparisons and tests on all of the datasets that we used in our research, we got the best 

results using CREMA-D, which is due to multiple reasons. The main reason is that it has a greater number 

of samples than any other dataset in comparison. Secondly, the number of speakers are more, due to which 

we got more variation in the accents and helped us more in speaker-independent emotion recognition. 

Despite significant improvement in Speech Emotion Recognition (SER), most of the existing systems rely 

on traditional techniques for emotion detection, which limits their results and accuracy. Furthermore, no 

current system reliably detects accurate emotions from live recorded real-time recorded speech input, 

especially under unpredictable acoustic conditions and speaker variations. To cover these limitations, we 

came up with a novel hybrid framework that combines Autoencoders (AEs) with a Self-Attentional CNN-

BLSTM architecture. Which brings several key contributions like emotion detection of a real time 

recorded speech, analyzing those signals in milliseconds and then by combining autoencoders and Self-

Attentional CNN-BLSTM (for contextual understanding and sequence modeling), the system captured 
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both local and global patterns in speech signals more effectively. We used the Self-Attention Mechanism 

that helped us in gaining accuracy in noisy and spontaneous speech conditions. 

In current study, we used CREMA-D, using Autoencoders, we processed and compressed the samples for 

robust feature extraction. We used a Self-Attentional Convolutional Neural Network–Bidirectional Long 

Short-Term Memory (CNN-BLSTM) architecture for effective temporal and contextual modeling and 

powerful sequential learning. the proposed method has the objective of significantly increasing the 

accuracy and reliability of ESER system. 

Literature Review 

Speech Emotion Recognition (SER) main purpose is to identify the emotions of speaker automatically 

from verbal audio. This task is challenging due to multiple factors like variability in speakers, accents, 

environments, and subtle emotional cues which are embedded in speech. Hybrid deep-learning 

architectures, notably those combining visual-like spectrogram features with sequential processing (e.g., 

CNNs + BLSTM), have emerged as effective solutions. Innovations which involves RCNN, autoencoders, 

self-attention, and other transformer-based modules have made significant contributions to the field. 

Since the early 1960s, the recognition of emotions from speech has been a focal point of research in HCI. 

Over the decades, numerous algorithms and techniques have been developed, each addressing Speech 

Emotion Recognition (SER) from a unique perspective, with specific strengths and limitations. 

Historically, most SER systems were grounded in classic machine learning approaches. Among these, 

traditional Acoustic Speech Emotion Recognition (ASER) systems often relied on algorithms such as 

Hidden Markov Models (HMMs) (e.g., Shahin’s two-stage HMM framework achieving ~67.5 % accuracy 

on Emirati-accented Arabic speech) [6]and Support Vector Machines (SVMs) (e.g., Aouani & Ayed’s 

2021 deep SVM fusion model using MFCC + autoencoder and SVM) [7]. These models typically used 

hand-crafted acoustic features—including spectral, cepstral, pitch, and energy-based characteristics—

extracted at the frame level. Statistical aggregation of these features across time was then performed to 

generate fixed-length utterance-level representations. While these early approaches laid the groundwork 

for SER, their performance was limited by their inability to model complex temporal dependencies and 

nonlinear emotional patterns inherent in natural speech. 

Saleem et al. (2023) proposed DeepCNN, a spectro-temporal model that stacks depth-wise separable 

convolutions with a lightweight Conv-Transformer block and GRU attention. Trained on EMO-DB and 

IEMOCAP, it reached 93.9 % WAA and 78.6 % WAA respectively with only 4.5 MB of weights, showing 

that careful convolutional design plus modest attention can rival heavier hybrids [8]. Wang et al. (2024) 

introduced the Speech Swin-Transformer, adapting hierarchical shifted-window self-attention to time-

domain spectrogram patches. Multi-scale aggregation enabled new state-of-the-art UAR on IEMOCAP 

(73.4 %) while reducing FLOPs by ~30 % versus vanilla Vision Transformers [9]. Li et al. (2024) tackled 

local/global trade-offs with a Multi-Scale Temporal Transformer (MSTR) that mixes fractal self-attention 

heads across coarse and fine time scales. On IEMOCAP, MELD and CREMA-D it outperformed a 

baseline transformer by 3–5 % accuracy and cut inference cost by half [10]. Chen et al. (2023) proposed 

a Deformable Speech Transformer (DST) whose learned offset windows adapt to emotion-salient regions 

of the spectrogram. Dynamic windows delivered 69.2 % WA on MELD—+4 % over fixed-window 

Swin—and similar gains on IEMOCAP [11]. Ma et al. (2023) released emotion2vec, a self-supervised 

“universal” speech-emotion backbone trained with utterance- and frame-level losses on unlabeled data. A 

single linear classifier on top of frozen embeddings beat prior SSL models by >4 % on ten languages, 

heralding scalable cross-lingual SER [12]. Ying et al. (2021) explored unsupervised autoencoders for 

feature learning. A stacked denoising AE pretrained on IEMOCAP boosted a downstream CNN by 3 % 

UA, confirming that reconstruction objectives can enrich emotional cues without labels [13]. Peng et al. 
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(2021) devised an Efficient MSCNN-SPU + Attention framework that jointly processes audio and ASR 

text. Statistical pooling plus attention lifted WA to 71 % on IEMOCAP—five points above prior CNN-

LSTM baselines while remaining parameter-lean (≈2 M) [14] Aftab et al. (2021) presented Light-SERNet, 

a three-branch fully CNN model optimized for edge devices (≤1 MB). Despite its size, it achieved 86 % 

WA on EMO-DB and 69 % on IEMOCAP, illustrating the viability of micro-SER on embedded 

hardware[1] Kim & Lee (2023) combined 2-D CNN, BILSTM and Transformer encoders, merging 

channel-wise self-attention with temporal recurrence. Cross-corpus tests on EMO-DB→RAVDESS 

improved UAR by 4 % over a CNN-BILSTM baseline, highlighting better domain transfer [15]. Zhu & 

Li (2022) proposed GLAM, which fuses global-aware statistics with multi-scale CNN features. Iterative 

kernels plus a simple fusion gate yielded up to 4.5 % WA gain on IEMOCAP compared with single-scale 

CNNs [16]. Lu et al. (2022) designed an Attentive Time-Frequency NN (ATFNN) combining a 

Transformer-like F-encoder and a BILSTM T-encoder, with dual attention to focus on key bands and 

frames. It surpassed prior spectrogram models by 2–3 % UAR on four-emotion IEMOCAP [17]. Muppidi 

& Radfar (2021) introduced a Quaternion CNN (QCNN) encoding three Mel-spectral channels as 

quaternions. The compact algebra cut parameters by 25 % yet hit 88.8 % accuracy on EMO-DB and 77.9 

% on RAVDESS [18]. Ahmed et al. (2021) built an ensemble of 1D CNN-LSTM-GRU sub-models with 

heavy data augmentation (noise, pitch, stretch). Majority voting reached ≥94 % accuracy on five corpora 

but at the cost of large composite size [19]. Ai et al. (2023) proposed DER-GCN, injecting dialogue- and 

event-relation edges plus a self-supervised masked graph autoencoder for multimodal (audio–text–video) 

emotion in conversation. F1 climbed to 67 % on MELD, beating ERC graph baselines by 5 % [20]. Li et 

al. (2022) – uses directed graphs and pair-wise complementary links to fuse modalities. Context-aware 

edges helped it top MMGCN by 4 % accuracy on IEMOCAP [21]. Li et al. (2022) –extends the idea with 

multiple improved GAT layers, reaching 61.3 % accuracy on MELD—state-of-the-art among graph-ERC 

methods then [22]. Wang et al. (2024) blended skip Graph Convolution and Graph Attention to model 

temporal-spatial speech edges. It improved WA by ~6 % over CNN-LSTM on both IEMOCAP and MSP-

IMPROV with modest overhead [23]. Filali et al. (2025) introduced a Capsule Graph Transformer (CGT) 

for multimodal emotion, combining GCN (acoustic), capsules (text) and ViT (vision). It achieved 69 %/56 

% accuracy on MELD/MOSEI, proving capsules can enrich language cues [24]. Nassif et al. (2023) 

modified CapsNet for emotional speaker verification, outperforming ResNet (EER 6.1 % → 4.4 %) while 

remaining under 2 M parameters—promising for SER, though evaluated on verification tasks [25] Zaidi 

et al. (2023) addressed cross-language gaps via a Multimodal Dual Attention Transformer (MDAT) using 

graph- and co-attention heads. Tested on four languages, it cut the target-language data needed by 60 % 

yet topped baselines by 3–7 % accuracy [26]. Akinpelu et al. (2024) introduced a lightweight Vision 

Transformer (ViT) model that operates on spectrogram images extracted from speech. They tested it on 

datasets like TESS and EMO-DB, achieving exceptional performance of 98% and 91% respectively, 

although its reliance on image-based inputs limits real-time applicability [27]. Wang and Yang (2025) 

employed the wav2vec2.0 framework combined with Neural Controlled Differential Equations (CDEs) to 

model temporal emotional patterns from speech. Using IEMOCAP, they achieved WA and UA scores 

above 73%, although their setup is computationally complex and resource-intensive [28]. In 2023, Wang 

et al. proposed a dual-fusion strategy using multimodal transformers on datasets like IEMOCAP and 

MELD. The study reported up to 8% improvement over baseline models by combining feature-level and 

model-level fusion, but the framework requires text transcripts and is not lightweight [29]. In 2022 Morais 

et al. explored a self-supervised learning approach using pre-trained representations from large-scale 

unlabeled speech, feeding them into a shallow neural network classifier. It achieved comparable 

performance to multimodal baselines but was evaluated only on IEMOCAP [30]. Cheng et al. in 2023 

proposed The LGFA Transformer. used a Local-Global Feature Aggregation structure and performed well 

on datasets such as IEMOCAP and EMO-DB. Although it set new benchmarks, the model's depth raises 

concerns about overfitting and inference speed [31]. Zhang and Xue (2021) designed an autoencoder 

architecture to embed emotion-specific features from speech. Their model improved upon traditional AEs 
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but lacked end-to-end design and required handcrafted preprocessing [32]. Kim et al. (2024) tackled 

speech recorded in noisy mobile environments using a multi-emotion autoencoder. Their solution 

achieved superior robustness to single-emotion AE models but is limited to specific use-cases with 

mobile-recorded speech [33]. Tang et al. (2024) integrated CNN and Transformer layers enhanced with 

multi-dimensional attention. Tested on IEMOCAP and EMO-DB, the model achieved state-of-the-art 

accuracy but demanded extensive computational resources [34]. Chowdhury et al. (2025) used a CNN-

BiLSTM hybrid that utilized handcrafted features on datasets like RAVDESS, TESS, SAVEE, and 

CREMA-D. Their model outperformed many spectrogram-only models but involved heavy preprocessing 

[35]. Al-onazi et al. (2025) developed a Transformer architecture that relied on 273 acoustic features. It 

achieved 91.7–95.2% WA across datasets like BAVED, SAVEE, EMOVO, and EMO-DB, although it did 

not incorporate multimodal inputs [36]. Latif et al. (2019) enhanced generalization by using adversarial 

autoencoders and multi-task learning to jointly predict speaker and gender alongside emotion. It improved 

domain adaptation but involved a more complicated training regime [37]. Chen et al. (2021) used a Key-

Sparse Transformer that focused attention on emotionally salient regions of the input. It improved 

accuracy but might overlook some global context [38]. Chen et al. (2022) proposed a multimodal 

autoencoder for audio-text fusion, outperforming single-modality baselines, although it relies on the 

availability of textual transcripts, which may limit real-world use [39]. 

Methodology 

In this study, the CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset) is utilized as 

primary dataset for ESER. It contains 7,442 audio-visual shots from 91 different professional artists in 

which 43 artists were female and 48 artists were male between the age group of 20 and 74. The actors 

were called to deliver 12 sentences that shows six types of different emotions— happiness, anger, fear, 

disgust, sadness and neutral—in 4 types of different formats: audio-only, visual-only, audio-visual, and 

transcriptions. The number of samples in each emotion is shown in figure 3. Using high-quality audio and 

video equipment, the recordings were captured in a controlled studio environment ensuring consistency 

across all the sessions. Multiple annotators rate each clip through crowdsourcing, giving emotion labels 

that are based on shared perception.  

 

Figure 3: Dataset Samples 

CREMA-D offers a rich and balanced distribution of emotional expressions and speaker demographics, 

making it a valuable benchmark for both audio-only and multimodal SER tasks. The dataset includes both 

acted and naturally expressive speech, allowing the proposed model to generalize well to various speaker 
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identities and emotional intensities. The availability of clean, segmented utterances with time-aligned 

emotion labels makes CREMA-D particularly suitable for training deep learning models such as CNNs, 

BLSTMs, and attention-based architectures. 

Data Processing Techniques 

In this study, the raw audio recordings from the CREMA-D dataset goes through a number of 

preprocessing procedures to guarantee consistency and effective feature extraction. First, the audio files 

are converted to mono, resampled to 16 kHz, and normalized to have zero mean and unit variance. A 

Voice Activity Detection (VAD) algorithm is applied to trim silence at the beginning and end of each 

utterance, minimizing redundant information. These standardized waveforms are then transformed into a 

log-Mel spectrogram, which captures the time–frequency characteristics of the audio signal in a format 

suitable for deep learning models. 

 

Figure 4: Log-Mel Spectrogram Extraction Pipeline 

The process begins with applying a Short-Time Fourier Transform (STFT) to segment the waveform into 

overlapping frames and compute their frequency content: 

S(t,f) = |∑ 𝓍[n] ⋅ 𝓌[n − t] ⋅ ℯ−j2πfn∕𝒩
𝒩−1

𝒩=0

|

2

 

where x[n]  is the raw audio signal, w is the Hamming window, and 𝒩 is the FFT size. The resulting 

power spectrum is then filtered through Mel-scale filter banks to simulate human auditory perception. 
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Finally, a logarithmic transformation is applied to reduce dynamic range, yielding the log-Mel 

spectrogram: 

Μ log(t,m) = log (∑|S(t, f)|2 ∙ Hm(f)

f

+ ϵ) 

Where Hm(f) is the m-th triangular Mel filter and here ϵ is a tiny constant to avoid log(0). These 

spectrograms are normalized and resized to fixed dimensions, allowing uniform input to the neural 

network model. 

 Proposed Methodology 

The proposed model is a hybrid approach that combines the feature extraction power of Convolutional 

Neural Networks (CNNs), the temporal sequence modeling of Bidirectional Long Short-Term Memory 

(BLSTM), and the contextual refinement ability of a Region-based CNN (R-CNN) block. This hybrid 

configuration allows the model to get both local spatial patterns (e.g., emotion-relevant frequency bands) 

and global temporal dependencies across an utterance. The CREMA-D audio inputs are first converted 

into log-Mel spectrograms, which are fed into a stack of CNN layers to get spatial features. Then these 

features are passed through BLSTM layers to model bidirectional time dependencies of emotion 

dynamics. 

 

Figure 5: Hybrid CNN-BLSTM Model with Region Proposal Network for Emotion Classification 

from Log-Mel Spectrograms 

To further improve the system’s capacity to detect subtle emotional regions within speech, a Region 

Proposal Network (RPN) is integrated into the pipeline. Inspired by R-CNN frameworks used in computer 

vision, the RPN isolates emotion-salient regions in spectrogram feature maps. These regions are pooled 

and refined before classification. The final softmax layer outputs a probability distribution over six 

emotion classes: neutral, angry, disgust, fear, happy and sad. This architecture is designed to achieve 

robust performance even under variability in speaker tone, speed, and acoustic background. 
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Model Working 

Each module is responsible for a specific task in the emotion recognition pipeline — from extracting 

spatial features to modeling temporal dependencies and finally localizing emotionally salient regions for 

classification. 

Let the input spectrogram be denoted as: 

X ∈ ℝT×F 

where F is the number of frequency bins and T is the number of time frames. This input is a log-Mel 

spectrogram derived from the raw audio waveform and serves as the basis for subsequent feature 

extraction and classification stages. 

 Emotion Detection and Prediction 

After the spectrogram is processed through the CNN and BLSTM layers, the resulting feature map 

captures both localized frequency-temporal patterns and sequential emotional dynamics across time. To 

further refine and focus the model's attention on the most emotion-relevant regions, a Region Proposal 

Network (RPN)—inspired by the Faster R-CNN framework—is applied on top of the CNN-BLSTM 

output. 

The RPN scans the spectrogram features and proposes high-activation regions where emotional changes 

are likely to occur. Each proposed region is pooled using a Region of Interest (RoI) Align operation to 

obtain fixed-size vectors, which are then passed to a fully connected (FC) classification head. These 

vectors retain spatio-temporal emotion cues and are treated as emotion-dense sub-clips. 

The final emotion prediction is generated by applying a softmax activation function to the fully connected 

output layer: 

ŷ = argmaxc∈{1,…,C}(
ewr

tr

∑ ewj
trC

j=1

) 

 

Where r is the pooled region feature vector, wc are the learned weights for class c, and C = 6 corresponds 

to the emotion classes: Anger, Disgust, Fear, Happy, Neutral, Sad. 

During inference, multiple proposed regions yield different local predictions. A final decision is made by 

aggregating the region-wise outputs, by selecting the region with the maximum confidence score. 

This region-aware emotional detection mechanism allows the system to not only predict the most likely 

emotion class but also localize where emotional shifts occur within the utterance, giving interpretability 

and robustness to the model. 
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Results 

Performance Metrics Overview 

The proposed CNN-BLSTM-RCNN model was evaluated on the CREMA-D dataset for speech emotion 

recognition. It achieved significant performance gains compared to baseline methods. Specifically: 

- Weighted Accuracy (WA): Improved from 73.9% to 81.6% 

- Absolute improvement: 7.7% 

- Relative improvement: 10.4% 

- Unweighted Accuracy (UA): Increased from 68.5% to 82.8% 

- Absolute improvement: 14.3% 

- Relative improvement: 20.9% 

Confusion Matrix 

Actual \ 

Predicted 

Angry Disgust Fear Happy Neutral Sad 

Angry 87 2 3 1 3 4 

Disgust 3 88 1 2 3 3 

Fear 2 2 90 0 3 3 

Happy 1 2 0 91 3 3 

Neutral 3 3 2 4 85 3 

Sad 2 1 3 3 2 89 

Table3: Confusion Matrix Table 

 

Figure 6: Confusion Matrix Heatmap for the CNN-BLSTM-RCNN Model 

The confusion matrix gives us important information about the behavior and effectiveness of the proposed 

SER model. It allows us to understand how well each emotion class is being predicted and where the 
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model faces challenges. The matrix indicates high classification performance across all six emotion 

categories — Angry, Disgust, Fear, Happy, Neutral, and Sad. For instance, the model correctly identified 

87 out of 100 Angry samples, and 88 out of 100 Disgust samples. Similarly, the Fear, Happy, and Sad 

classes also exhibit strong recall, with over 89% of the samples correctly predicted. Misclassifications are 

minimal and typically occur between semantically or acoustically similar emotions, such as Sad and 

Neutral, or Angry and Disgust. This overlap is expected due to the natural acoustic proximity between 

some emotional states in speech. 

This strong diagonal dominance in the confusion matrix reflects the model’s robustness in distinguishing 

between affective states and confirms that the combined spatial and temporal modeling contributes to 

reliable emotion classification. 

Evaluation Metrics per Class 

Class Precision Recall F1-Score 

Angry 0.89 0.87 0.88 

Disgust 0.90 0.88 0.89 

Fear 0.91 0.90 0.90 

Happy 0.90 0.91 0.91 

Neutral 0.86 0.85 0.85 

Sad 0.85 0.89 0.87 

Average 0.88 0.88 

 

0.88 

Table 4: Evaluation Metrics per Class 

 

Figure 7: Evaluation Metrics per Class Visualization 

Significance of the Proposed Model 

The proposed model leverages the complementary strengths of three advanced deep learning architectures 

— Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BLSTM), and 
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Region-based Convolutional Neural Networks (R-CNN). This hybrid architecture enables the model to 

effectively capture: 

• Local spectral patterns via CNNs 

• Temporal dependencies across speech frames using BLSTM 

• Emotionally salient regions through the R-CNN-style region proposal mechanism 

This integration results in significant performance gains over traditional methods. Specifically, the model 

achieves a Weighted Accuracy (WA) of 81.6% and an Unweighted Accuracy (UA) of 82.8%, 

outperforming prior systems by absolute margins of 7.7% and 14.3%, respectively. These improvements 

translate into relative gains of 10.4% (WA) and 20.9% (UA). 

Comparison with Previous Models 

To assess the effectiveness of our proposed hybrid CNN-BLSTM-RCNN model, we compared its 

performance against conventional and deep learning-based approaches. The comparison is based on 

Weighted Accuracy (WA) and Unweighted Accuracy (UA). 

 Weighted Accuracy (WA) Unweighted Accuracy 

(UA) 

Traditional SVM 73.9% 68.5% 

CNN-BLSTM (baseline) 78.2% 74.0% 

Proposed CNN-BLSTM-

RCNN 

81.6% 82.8% 

Table 5: Accuracy Comparison 

 

Figure 8: Weighted and Unweighted Accuracy Comparison 

To highlight the superiority of our approach, we compared the results with conventional and recent deep 

learning-based SER methods. Traditional classifiers such as Support Vector Machines (SVM) achieved 
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WA and UA scores of 73.9% and 68.5%, respectively, relying heavily on hand-crafted features and 

lacking deep contextual modeling. 

A stronger baseline, such as a CNN-BLSTM model, improved these metrics to 78.2% (WA) and 74.0% 

(UA), by introducing temporal modeling. However, it still fell short in identifying subtle emotion cues, 

especially in acoustically similar expressions. 

 

Figure 9: Comparison with  Previous Models 

Our proposed CNN-BLSTM-RCNN model demonstrates a significant leap in both WA and UA by 

incorporating region-based feature localization. This attention mechanism not only reduces the influence 

of irrelevant parts of the spectrogram but also emphasizes emotionally rich segments, resulting in more 

precise classification. 

Thus, the proposed architecture sets a new benchmark in speech emotion recognition using the CREMA-

D dataset and offers a scalable framework for future SER applications in real-time human-computer 

interaction systems, call centers, therapy, and beyond. 

Conclusion 

In this study, we proposed a novel hybrid architecture combining CNN, BLSTM, and R-CNN techniques 

for effective speech emotion recognition. By utilizing the unique capabilities of each component—CNNs 

for spatial feature extraction, BLSTM for temporal modeling, and R-CNN for attention-based localization 

of emotion-salient regions—our model significantly outperformed traditional and baseline deep learning 

approaches. The system achieved a Weighted Accuracy (WA) of 81.6% and an Unweighted Accuracy 

(UA) of 82.8% on the CREMA-D dataset, marking substantial improvements in both general and class-

balanced performance. This validates the model’s robustness in capturing complex emotional patterns 

from speech, even in the presence of overlapping acoustic cues. 

What sets our model apart is its ability to focus dynamically on the most emotionally relevant parts of the 

spectrogram, reducing the impact of irrelevant or neutral sections. This leads to more accurate emotion 

classification and better generalization. For future work, we plan to extend the model by integrating self-

attention mechanisms such as transformers to enhance long-range temporal dependencies. Additionally, 

we aim to evaluate the system on multilingual datasets and deploy it in real-time settings for interactive 

emotion-aware systems, thereby improving emotional intelligence in human-computer interaction.  
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