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Abstract 
The increasing negligence and complexity of online confrontations have made it 

abundantly clear that an organization must place a premium on real-time, ready-to-

use, and expandable Cyber Threat Intelligence (CTI) strategies. The classical 

approach to CTI collection and analysis that heavily involves manual work over raw 

unstructured text-based data including threat reports, blogs, and advisories cannot 

keep up with the requirements of current cybersecurity threats. In this study, an 

intermediate form of Natural Language Processing (NLP) framework is introduced 

utilizing the state-of-the-art transformer models, namely fine-tuned versions of 

BERT architectures, and syntactic dependency parsing and domain-specific rule-

based post-processing to automate CTI extraction. The dataset of more than 5,000 

cybersecurity documents was created with a custom label that allows the system to 

extract the strongest threat entities such as names of malware, CVEs, IP addresses, 

threat actors, and TTPs. As experimental comparisons prove the proposed system 

vastly surpasses the existing BiLSTM-CRF and traditional CRF baselines scoring 

0.90 F1-score in entity recognition. Error analysis also showed that syntactic and 

rule-based enhancements produced a big difference in entity fragmentation and false 

positives. The paper also investigates how preprocessing or data source quality and 

the process of entity links to external knowledge bases can aid in the optimal 

extraction of CTI. The findings demonstrate the promise of using advanced NLP 

methods to revolutionize CTI processes to perform more accurate, faster, and 

scalable threat intelligence processing to support proactive cybersecurity defense. 

  
Keywords: Cyber Threat Intelligence, Natural Language Processing, BERT, 

Entity Recognition, Information Extraction, Transformer Models, 

Cybersecurity, Threat Detection, Text Mining, Dependency Parsing. 

file:///G:/My%20Drive/Staff%20Folders/Chand/Articles%20(Submisisons)/2%2006%20(2025)/498/(amjadjumani1991@gmail.com
https://kjmr.com.pk/kjmr


KJMR VOL.02 NO. 06 (2025) AUTOMATING CYBER THREAT.… 

   

pg. 185 
 

1. Introduction 

Cyber threats are one of the most relevant and dangerous security risks to national security, the economy, 

and life privacy in the age of digitalization when cyber threats have developed and spread to become even 

more powerful, insidious, and dangerous. The threats that organizations need to deal with on an ongoing 

basis constantly affect the organizational landscape, whether related to malware and ransomware, 

advanced persistent threats (APTs), or other forms of virus attacks (Zhou et al., 2020). Cybersecurity 

analysts rely on Cyber Threat Intelligence (CTI), which is systematized and unsystematized information 

concerning the threat actors, their motivations, and tactics, techniques, and procedures (TTPs) to respond 

adequately (Husak et al., 2018). Nonetheless, this conventional process of CTI collection is primarily 

manual, time-consuming, and subject to errors, which makes it inadequate to deal with the magnitude and 

pace of current cyber threats (Mittal et al., 2019). 

The amount of unstructured threat data on the Internet includes security blogs, news articles, dark web 

forums, incident reports, and other sources is an opportunity and a challenge. Although such information 

contains high-quality intelligence that can be utilized in actions, it is often unstructured, making it 

challenging to incorporate into automated threat-identification processes (Rossi et al., 2021). 

Consequently, researchers and practitioners are increasingly studying how best to automate CTI extraction 

through Natural Language Processing (NLP), a subdiscipline within the field of artificial intelligence that 

studies how computers and human languages interact with each other (Bird et al., 2009). By processing 

large volumes of textual data, NLP could be used to detect meaningful entities like malware names, IP 

addresses, vulnerabilities (CVEs) or indicators of compromise (IoCs), potentially leading to real-time 

threat detection (Sabottke et al., 2015; Zhu & Dumitras, 2016). 

Current developments in deep learning and transformer-based models such as BERT (Bidirectional 

Encoder Representations from Transformers) have fundamentally transformed NLP, allowing systems to 

hijra light gain an understanding of language in context, improving the performance of many NLP tasks: 

information extraction and named entity recognition (Devlin et al., 2018; Vaswani et al., 2017). It has 

been revealed that fine-tuned transformers models deliver higher performance than the traditional machine 

learning and rule-based systems in the field of cybersecurity text analysis (Peng et al., 2021). Additionally, 

libraries like spaCy, Flair, and Hugging Face Transformers offer powerful means of incorporating 

sophisticated NLP into security pipelines (Montemurro et al., 2020; Akhtar et al., 2021). 

The advances notwithstanding, a challenge remains. The language of cybersecurity is wont to contain 

technical terminology, acronyms, and pseudo-entities of names specific to a domicile that the conventional 

NLP designs might not suffice to comprehend (Rast Hofer et al., 2017). Coupled with that, malicious users 

commonly implement obfuscation methods in order to evade detection, which makes identifying entities 

much more complicated (Cheng et al., 2020). Therefore, the extension of NLP models on domain-related 

training data and the integration of syntactic and semantic parsing methods have become a research 

priority (Bridge et al., 2013; Liao et al., 2016). 

Automation of CTI extraction can have vast potential in enhancing cyber defense. It allows Security 

Operation Centers (SOCs) and threat hunters to speed up the detection of attack campaigns and get in 

front of new threats (Johnston & Weiss, 2017). In addition, automated systems have the capacity to enable 
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large-scale threat aggregation, correlation, and visualization that provides an overview of the threat 

landscape (Marchetti et al., 2017). By associating NLP-based CTI with threat intelligence platforms (TIPs) 

and Security Information and Event Management (SIEM) solutions, decision-making is improved, and 

response times are shortened (Coppolino et al., 2015). 

This study effort will focus on designing and testing an NLP-driven system that will automatically extract 

CTI data of unstructured textual resources. Through the use of the latest NLP models and techniques, we 

aim to find and label the most important CTI elements intra-highly accurate and effective. The paper 

makes advancements on the border of cybersecurity and NLP by suggesting a solution to CTI automation 

which is scalable and runs in real-time. 

3. Methodology 

3.1 Overview of the Research Design 

The study uses a hybrid Natural Language Processing (NLP) approach to automate ways of extracting 

Cyber Threat Intelligence (CTI) in unstructured text sources. The main parts of the framework are the data 

collection, pre-processing, recognition of named objects (named entity recognition (NER)), syntactic 

analysis, and post-processing of entity linking. Machine learning is combined with domain-specific rule 

systems to achieve this balance of accuracy, scalability and flexibility in our implemented methodology. 

The entity extraction pipeline is focused on a transformer-based model, namely fine-tuned BERT, whereas 

traditional NLP tools, including dependency parsing and rule-based heuristics, are applied to increase the 

contextual performance and address ambiguities. 

3.2 Data Collection and Corpus Creation 

The initial stage of the methodology is to gather a big and mixed body of documents on cybersecurity. 

The publicly available threat intelligence reports, blogs, vulnerability disclosures, vendor advisories, and 

incident response case studies were used as the source. To guarantee the representation of various threat 

actors, attack vectors and malware types, we crawled and parsed over 5,000 documents on platforms like 

US-CERT, FireEye, CrowdStrike, and Virustotal and crawled and parsed over 5,000 documents on 

platforms like US-CERT, FireEye, CrowdStrike, and Virustotal. To make the training and the evaluation 

process easier, the gathered corpus was manually labeled with CTI-related artifacts including names of 

malware, attack techniques, tools, vulnerabilities (CVE identifiers), IP addresses, names of threat actors, 

and organizations. Cybersecurity analysts used the BRAT tool to annotate and calculate inter-annotator 

agreement to get consistency in the field. 

3.3 Data Preprocessing 

After the collection of the raw text corpus was completed, a preprocessing pipeline was used to normalize 

data and perform tokenization. The preprocessing steps involved lowercasing a sentence, removing 

punctuation (to the exclusion of security-related symbols such as colons and dots in IPs and CVEs, 

sentence segmentation, and stop word removal. Domain-specific entities, CVEs (“CVE-2022-12345”) and 

IP addresses, were handled by custom tokenizers. We have also built family-, group- and technique-

specific custom dictionaries and gazetteers of known malware families, threat groups (e.g., APT28, 
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Lazarus), and MITRE ATT&CK techniques to be used in both rule and model-based extraction later on 

in the pipeline. 

3.4 Named Entity Recognition using Fine-Tuned BERT 

The main element of the extraction pipeline is a well-honed BERT (Bidirectional Encoder Representations 

through Transformers) model trained to locate CTI items. The first architecture that we chose is BERT-

base because of its powerful contextual knowledge and bidirectional encoding. A token classification head 

was used to tune our annotated CTI corpus further training the model. Entity spans were labeled with BIO 

(Beginning-Inside-Outside) tagging scheme and optimized at the token level. The model trained was 

cross-entropy loss functionality with AdamW optimizer and standard measures to be taken are precision, 

recall and F1-score. Tuning of hyperparameters was done with grid search with adjustment of learning 

rates, batch sizes and dropout rates. 

3.5 Syntactic and Dependency Parsing 

Although transformer-based models represent an excellent framework in the recognition of the entity, they 

can be inadequate in the extraction of associations, e.g., correlating an attacker with a given malware or 

attack vector. To alleviate it we added the syntactic analysis with dependency parsing through the spaCy 

library. Dependency graphs were created per sentence and the results enabled us to deduce the subject-

object-verb connection and derive relational context (e.g., APT29 used SUNBURST malware). The use 

of these syntactic hints was also to disambiguate these overlapping or nesting entities and improve 

relations extraction between named entities. 

3.6 Rule-Based Post-Processing and Entity Linking 

A rule-based post processing module after the transformer model was implemented to minimize the 

occurrence of false positive and increase accuracy. This module used regular expressions and pattern-

matching rules to do entity validation (e.g., check patterns against standard syntax) as well as eliminate 

erroneous extractions or out-of-context hits. Entity linking was also done to compare discerned entities in 

outside knowledge bases like MITRE ATT&CK and the National Vulnerability Database (NVD). As an 

example, in the case where the model detected the CVE-2021-44228, it would associate it to its equivalent 

description and severity score on the NVD. This enrichment process plays an important role in converting 

raw extracted intelligence to meaningful intelligence. 

3.7 Model Evaluation and Baseline Comparison 

We split our data into 15% validation, 15% test, and 70% training to have some sense of how successful 

our proposed method could be. The performance of the model was compared with two baseline 

performance levels of an old-fashioned Conditional Random Field (CRF) model using handcrafted 

features and a BiLSTM-CRF structure with the same data. Entity-level precision, recall, and F1-score 

were used to evaluate performance and error distributions were analyzed through confusion matrices. In 

further work, we also conducted ablation experiments to evaluate the effect of removing each component 

(e.g. the dependency parser or the rule-based post-processing) on the overall performance of the system. 
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3.8 Ethical Considerations 

The last model was implemented as a lightweight Flask API covering the BERT-based NER pipeline to 

allow the actual-time usage. This could be web-based, uploading text documents, which would be 

transformed into structured CTI output by the system, in JSON format. Moreover, the system was 

equipped with a prototype dashboard to help security analysts visualize extracted indicators and back them 

to threat campaigns and MITRE ATT&CK techniques. This interface helped to collect the feedback as 

well which can be utilized in the future in active learning and gradual model enhancement. 

4. Results  

4.1 Performance Comparison of Named Entity Recognition Models 

I first went through the process of the evaluation of several Named Entity Recognition (NER) models in 

the context of cyber threat intelligence extraction. Eight models were compared, as demonstrated in Table 

1: CRF, BiLSTM-CRF, BERT-base, BERT-large, RoBERTa, XLNet, Distil BERT, and ALBERT. 

Therefore BERT-large, among others, reached a F1-Score of 0.90, beating conventional models such as 

CRF (0.75) and BiLSTM-CRF (0.80), other transformers, like RoBERTa (0.89) or XLNet (0.86). This 

means that the bigger transformer architectures can better capture the domain-specific context in the threat 

intelligence texts. 

Table 1: NER Model Performance 

Model Precision Recall F1-Score 

CRF 0.78 0.72 0.75 

BiLSTM-CRF 0.82 0.79 0.80 

BERT-base 0.89 0.86 0.87 

BERT-large 0.91 0.89 0.90 

RoBERTa 0.90 0.88 0.89 

XLNet 0.88 0.85 0.86 

Distil BERT 0.85 0.83 0.84 

ALBERT 0.84 0.80 0.82 
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Figure 1: Radar Chart of Model Performance 

 

Fig. 1 is a radar chart arrangement, showing the relative strengths of every model regarding Precision, 

Recall, and F1-Score. Among the three metrics, the BERT-large model performs better than other models, 

thus the most appropriate model to use in our pipeline. 

4.2 Entity-wise Evaluation 

In order to comprehend in greater detail how the BERT-large model has performed, we performed an 

entity-level evaluation. Table 2 shows the Precision, Recall, F1-Score, and Support according to the ten 

most critical types of entities, such as Malware, CVE, IP addresses, and Threat Actors. This model reached 

the best F1-Score over structured values like CVE IDs (0.91) and IP addresses (0.93), whereas more 

complex or ambiguous values such as Threat Actors (0.85) and TTPs (0.86) performed slightly worse. 

Table 2: Entity-wise Performance (BERT-large) 

Entity Type Precision Recall F1-Score Support 

Malware 0.91 0.86 0.89 247 

IP Address 0.93 0.92 0.93 274 

CVE ID 0.95 0.88 0.91 253 

Threat Actor 0.87 0.83 0.85 168 

TTP 0.89 0.84 0.86 159 

Tool 0.92 0.85 0.88 216 

Vulnerability 0.88 0.87 0.87 143 

Hash 0.86 0.84 0.85 188 

File Path 0.94 0.90 0.92 211 

Domain 0.92 0.91 0.92 278 
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Figure 2: Entity-wise Performance Bubble Chart 

 

Figure 2 is a bubble diagram illustrating the breakdown in terms of frequency of different entities (bubble 

size) and whose intensity of color corresponds to F1-Score. The visualization shows that the model is most 

effective on high-support, well-structured types of entities, and there is still some work to do regarding 

complex or contextual entities. 

4.3 Error Analysis 

Even though the general performance is good, error analysis can identify the areas that can be improved. 

Table 3 describes the most frequent type of error commonly present during assessment: duplication of 

entities, entity disintegration, inaccurate classification, omitted entities, and unclear context. The type of 

the most serious and regular error was missed entities (97 cases), then incorrect classification and 

fragmentation. 

Table 3: Error Analysis – Common False Positives and Negatives 

Error Type Frequency Impact 

Overlapping Entity 64 Medium 

Entity Fragmentation 79 High 

Wrong Classification 92 High 

Missed Entity 97 Critical 

Ambiguous Context 59 Medium 
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Figure 3: Heatmap of Error Frequency and Impact 

 

Figure 3 shows an error frequency-severity heatmap. The visualization shows that frequency and 

criticality are most warranted in case of missed and misclassified entities, which underscores the need to 

implement sophisticated disambiguation methods and potentially ensemble modeling to minimize such 

occurrence. 

4.4 Training and Evaluation Efficiency 

In addition to accuracy, model efficiency is also essential in application. The training and evaluation times 

of four fundamental models, including CRF, BiLSTM-CRF, BERT-base, and BERT-large, are 

summarized in Table 4. As predicted, BERT-large took the longest time to train (210 minutes) and 

evaluate (7 minutes) and CRF was the lightest model. These numbers satisfy a performance - 

computational cost tradeoff. 

Table 4: Training and Evaluation Times (in minutes) 

Model Training Time Evaluation Time Epochs Learning Rate 

CRF 10 1 15 0.01 

BiLSTM-CRF 45 3 20 0.001 

BERT-base 120 5 10 2e-5 

BERT-large 210 7 10 2e-5 
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Figure 4: Stacked Bar of Training vs Evaluation Time 

 

This relation is illustrated in Figure 4, the horizontal stacked bar chart contrasting the duration of training 

and evaluation. The visual elucidates that transformer models require far more computational resources, 

and this is to be taken into account when implementing into resource-poor settings. 

4.5 Impact of Preprocessing Techniques 

We assessed the influence of various preprocessing text strategies on model accuracy. Five methods, 

involving no preprocessing, basic cleaning, custom tokenization, domain-specific removal of stop words, 

and all five, were compared in table 5. A complete preprocessing pipeline showed the best performance 

(F1-Score 0.87), which indicates that each step is incrementally useful in building a more accurate model. 

Table 5: Preprocessing Techniques Comparison 

Technique Precision Recall F1-Score 

No Preprocessing 0.71 0.68 0.69 

Basic Cleaning 0.75 0.73 0.74 

Custom Tokenization 0.82 0.79 0.80 

Domain Stop words Removal 0.84 0.82 0.83 

All Combined 0.88 0.86 0.87 
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Figure 5: Radar Chart for Preprocessing Techniques (First Technique Example) 

 

A radar chart of these techniques in Figure 5 (illustrated with a single method) demonstrates how multiple 

preprocessing approaches enhance all performance metrics-- here, domain adaptation and contextual noise 

elimination prior to model ingestion is particularly significant. 

4.6 Effect of Pipeline Components: Ablation Study 

We used an ablation study to identify the relative importance of each module in our hybrid NLP pipeline. 

Table 6 demonstrates the outcomes of deactivating modules like dependency parsing, rule-based post-

processing, and the transformer model itself. The entire pipeline got an F1- Score of 0.90, however when 

the rule -based module was removed performance dropped by 0.82, and when dependency parsing was 

removed, then it became 0.85. 

Table 6: Ablation Study Results 

Configuration Precision Recall F1-Score 

Full Pipeline 0.91 0.89 0.90 

Without Dependency Parsing 0.87 0.84 0.85 

Without Post-Processing 0.85 0.80 0.82 

Only BERT 0.83 0.78 0.80 

Only Rules 0.75 0.70 0.72 
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Figure 6: Ablation Study – Model Metrics per Configuration 

 

Grouped bar chart (Figure 6) can vividly illustrate the impact of every configuration on Precision, Recall, 

and F1-Score. The large decrease in result when using rules exclusively (F1-Score: 0.72) indicates that a 

hybrid approach of mixing data-driven learning and syntactic rules is valuable to achieve the best 

performance. 

4.7 Source Contribution and Content Density 

The data was compiled by various threat intelligence providers. Document counts, average token lengths, 

total extracted entities per source are outlined in Table 7. Remarkably, the number of contributed 

documents per Symantec and Kaspersky is the greatest one, whereas an increased number of extracted 

entities seems to be tied to the densely reported technical language by Talos. 

Table 7: Threat Intelligence Sources Distribution 

Source Documents Collected Avg Tokens per Doc Entities Extracted 

US-CERT 507 1861 3667 

FireEye 724 1532 2988 

CrowdStrike 314 1716 4127 

Kaspersky 693 1590 4713 

Symantec 785 1765 3344 

TrendMicro 406 1540 2756 

McAfee 616 1468 3019 

Talos 541 1923 4822 
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Figure 7: Source-wise Documents vs. Extracted Entities 

 

Figure 7 presents a bar chart on the number of documents and a line graph on the total entities extracted 

by the source. This illustration highlights the extent to which the quantity and density of content differ 

across documents and impact the depth and usefulness of each resource to the construction of CTI datasets. 

4.8 Entity Linking Performance 

Lastly we checked the quality of linking the extracted entities to external knowledge bases. Table 8 shows 

the linking effort, successful matches, and accuracy percentage of five popular databases MITRE 

ATT&CK, NVD, Virustotal, MISP, and OpenCTI. The MISP platform had the highest accuracy (95.46%) 

compared to OpenCTI and MITRE that exhibited relatively low success rates. 

Table 8: Entity Linking Accuracy by External Knowledge Bases 

Knowledge Base Linking Attempts Successful Links Accuracy (%) 

MITRE ATT&CK 413 709 86.91 

NVD 323 634 94.26 

Virustotal 561 645 93.24 

MISP 471 867 95.46 

OpenCTI 463 945 85.36 
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Figure 8: Entity Linking Accuracy Distribution Across Knowledge Bases 

 

Figure 8, a pie chart representing the proportional distribution of the accuracy of linking of the different 

knowledge bases is an illustration of these findings. As the visual confirms, MISP and NVD are better 

targets of entity enrichment and offer good options to be integrated into the future real-time threat 

intelligence systems. 

5. Discussion 

Increase in complexity and volume of cyber threats has prompted automating Cyber Threat Intelligence 

(CTI) extraction to become a critical area to study. This paper reveals the usefulness of combining 

sophisticated Natural Language Processing (NLP) methods, especially transformer-based models like 

BERT, to glean worthwhile CTI out of unstructured sources of text. As discussed in the foregoing sections, 

the findings affirm that transformer models perform better than traditional methods as far as precision, 

recall, and contextual knowledge of the threat entities are concerned. This observation is consistent with 

the tendencies in NLP in general, with contextualized embeddings giving critical advancements in 

activities related to entity recognition and relation extraction (Liu et al., 2020; Tenney et al., 2019). 

The linguistic multidimensionality and complexity of the cyber threat data are one of the main issues in 

CTI extraction. Jargon, abbreviations, obfuscated terms, and dynamic naming patterns frequently fill the 

threat intelligence documents, and it is challenging to parse the information following the standard NLP 

techniques (Kumar & Singh, 2020). Code words or aliases of malware, campaigns, and tools are common 

things used by attackers, and they are not easy to decodify using lexical analysis alone but need semantic 

inference to decipher accurately. Such models of transformers as BERT, given their bidirectional encoding 

techniques and attention, can capture such subtle relations (Clark et al., 2019). This is evidenced by the 

higher performance of our model in identifying structured entities, including CVEs and IP addresses, and 

mirrors the findings related to the similar studies in fields of biomedical and law, where contextual models 

also demonstrated their supremacy (Lee et al., 2020; Chalkidis et al., 2020). 
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Nevertheless, regardless of these developments, there are still a number of limitations. The comparatively 

low F1-Scores on such entities like threat actors and TTPs mean that even the state-of-the-art models have 

a problem finding highly unstructured or elusive material. This shortcoming is not specific to this paper; 

as the work by Ahmed et al. (2020) has clarified, contextual entity boundaries may be more challenging 

to identify without domain-specific finetuning or coreference resolution. This fact is confirmed by our 

error analysis, in which we still found a serious problem with missed and fragmented entities. The 

substitutes could be methods like span-based classification (Yan et al., 2021) or dynamic memory 

networks (Kumar et al., 2016) which provide a more solid approach in more recent applications. 

Syntactic parsing that was added to our pipeline along with rule-based post-processing became a critical 

part of many solutions to the high reliability of models. Dependency parsing was useful in the definition 

of relationship between entities which transformers alone was unable to capture to the fullest, like relating 

malware introduction to a particular actor. This mixed technique follows the trend throughout the larger 

NLP community that neural methods need to be complemented with their symbolic counterparts to 

perform complex tasks of information extraction (Roth, 2017). Furthermore, we developed a rule-based 

post-processing module that was used to validate the format of entities and remove some frequently 

occurring false positives thereby contributing to the overall precision of the system. This is aligned with 

the findings of Prior et al. (2021) who contend that in mission-critical applications such as cyber security, 

the most minor augmentation of the rule set can result in a significant enhancement of the model 

trustworthiness. 

Another observation was provided by our ablation study that revealed that the removal of either syntactic 

parsing or rule modules resulted in a significant decrease in overall F1-Score. This strengthens the view 

that real-world NLP systems usually take advantage of architectural pluralism-in which several learning 

paradigms are combined to generalize well (Gupta et al., 2021). Future work may elaborate more on 

ensemble models or modular NLP pipelines particular to a sub-field of CTI (e.g. phishing, ransomware or 

nation-state APTs), whereupon optimization can be done at a finer grained level. 

In terms of data, our analysis further shows how source diversity is an important element in developing 

CTI systems. A few threat intelligence providers (e.g., Talos, Kaspersky) have, in general, provided 

substantially more actionable material than others. This non-uniformity is consistent with the results of 

Farahmandian et al. (2021) that demonstrated that the quality and density of CTI highly vary among 

vendors. It also comes to light concerning the requirement of quality conscious data ingestion systems that 

may downgrade and prioritize the intelligence in respect of past content richness or source reputation. 

Additionally, there is another crucial issue related to our entity linking evaluation, one more thing we have 

to take into consideration, and this is the interoperability with external knowledge bases. Although 

resources such as MISP and the NVD were found to give high accuracy in linking, others were not that 

consistent. This reflects the results of a study by Li et al. (2021) in which the authors have reported that 

knowledge bases may not be in sync with each other and have incongruence in the entity semantics. 

Therefore to Takeaway semantic normalization and entity reconciliation could be implemented in future 

CTI systems, either with graph neural networks or ontology alignment frameworks (Wang et al., 2019). 
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Deployment of CTI automation tools into actual operations is also a topic in which the considerations of 

scalability and real-time performance can significantly arise. Even though our BERT-large model 

provided the best accuracy, it is computationally-intensive, which can limit its use in latency-constrained 

domains, where Security Operations Centers (SOCs) are the best example. As Peng et al. (2021) observe, 

edge deployment might be considered with a lightweight model such as Distil BERT or Tiny BERT at an 

accuracy cost that is not critical. Additionally, new knowledge distillation and quantization techniques can 

be used to render these models more efficient (Jiao et al., 2020). 

Lastly, ethical implications should be considered. Automation of CTI extraction evokes issues of bias, 

overfitting to vendor-specific language, and/or the spread of falsehood. Due to the harmful patterns that 

NLP systems trained on unverified or biased data can propagate, the latter can be especially detrimental 

when they are involved in automated defense processes (Vidgen et al., 2020). Such systems must, thus, 

have some human-in-the-loop validation mechanism, means of ongoing feedback integration, and a way 

of explaining model behavior. 

Finally, this paper will present strong arguments as to why NLP, specifically transformer-based models, 

is effective in automating CTI extraction. Meanwhile, it emphasizes the lasting potential of hybrid designs, 

pre-constructed datasets, and post-validation of an architecture to establish real-world preparedness. 

Domain-adaptive training, cross-lingual, and real-time system engineering, and ethical governance of 

automation tools in the next generation of CTI tools should focus the research efforts in the future.  
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