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Abstract 
Because skin cancer can appear right away and may spread fast, it is considered one 

of the most dangerous types of cancer. When cells begin dividing faster than normal, 

they build up in one area, invade other tissue and move to several parts of the body. 

Finding cancer early allows doctors to control it before it becomes serious and 

requires more intensive treatments. Thanks to CNNs, skin cancer diagnosis now 

relies on finding in-depth details in images, allowing lesions to be classified with 

accuracy. Through early detection, they help dermatologists spot skin changes at 

their earliest point which is valuable for patient health. This research introduces a 

novel use of CNN for the task of classifying skin cancer lesions. This study tests the 

CNN model using the unbalanced datasets: HAM10000. Other transfer learning 

models used in this paper are Xcepton, and DenseNet201 and they are evaluated 

alongside the CNN model. Forecasts are measured using four main evaluation 

metrics: accuracy, recall, precision, F1-score, specificity and. Results from the 

experiments reveal that the proposed CNN model does better than other deep 

learning (DL) models that used these datasets. The proposed model delivered the best 

results on HAM10000 (97:4%). The results prove that using CNN as a model helps 

solve problems related to class imbalance and leads to greater accuracy in detecting 

skin cancer. Moreover, the model suggested here outperforms other recent studies 

that use the same data, particularly in accuracy, indicating that the CNN is robust and 

effective. 

 Keywords: Dermoscopic images, Deep learning, Convolutional neural 

networks, Skin cancer diagnosis, Transfer learning. 
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INTRODUCTION 

Melanoma is a well-known kind of skin cancer that affects an estimated large number of people around 

the world. As explained in this blog, Convolutional Neural Networks (CNNs) help make skin cancer 

diagnosis easier. A tumor is a condition that results when normal cells within a body are transformed in 

ways that permit them to grow and divide unregulated. Such growth leads to the development of a mass 

or lump of tissue. Tumors can be divided into two main types. benign (noncancerous) and malignant 

(cancerous). Benign tumors grow very slowly and do not invade other areas of the body, while malignant 

tumors are capable of invading the adjacent tissues and metastasizing or spreading to different organs. 

This ability to grow aggressively and proliferate sets malignant tumors apart as a health emergency that 

should be handled in good time by medical personnel[1]. 

There are different types of skin cancer, namely the basal cell carcinoma, squamous cell carcinoma, and 

melanoma, but melanoma is the most dangerous type. Melanomas tend to spread fast when left 

unidentified an early stage. It is estimated by statistics that more than 3.5 million new cases of various 

skin cancers are being reported yearly worldwide[2]. This level of occurrence underscores the need to 

undertake early detection and regular skin checks as well as employ sun protection. Preventive measures 

and awareness are very important in checking the increasing cases of skin cancer.The cancer develops 

tendencies for metastasis, and this forces it to spread to nearby organs and tissues. If melanoma is 

diagnosed and treated at a young stage, it is usually treatable, and the outlook is strong4. Melanoma 

diagnosis in its early stages is considered both very challenging and very important by researchers in 

oncology. The SCC, BCC and SGC are, for the most part, considered non-melanoma cancers. Melanoma 

cancer is found in more areas of the body than non-melanoma cancer, which is not as easy to treat or 

respond to therapy. Skin cancer is most effectively treated if it is found in its early stage[3]. 

Skin cancer is difficult to manage because most treatments are basic, so catching it early is very important. 

Proper evaluation and the ability to spot skin cancer will be the most viable approach for stopping skin 

cancer. Deep learning is extensively used in connection with unsupervised learning, as has been said 

earlier. During the last few years, recognizing skin cancer from a single frame was more accurate, and the 

Inception-v3 network achieved top-1 and top-5 error rates of 3HD21.2% and 5HC5.6%, which is far 

superior to previous systems. These upgrades stood out clearly while working on the validation data from 

the 2012 ILSVRC classification task. So, here is the complete model; it is trained using RMSprop on 

several GPUs[4], [5]. 

About 96,480 cases of melanoma were identified in the US in 2019, and the disease caused roughly 7230 

reported deaths the same year3. Sun exposure, which leads to UV radiation, is one of the reasons skin 

cancers develops. Late-stage or malignant melanoma causes the cancer to grow into nearby tissues. But 

yet, melanoma is a dangerous sort of cancer, and even if the risk looks high, the likelihood of recovery 

from early detection is very good. It is both a tough and a crucial area of medicine to study early-stage 

melanoma diagnosis. Many cases of cancer, thus, are classed as SCC, BCC, and SGC, which are known 

as nonmelanoma types[5]. Most of the time, non-melanoma cancers are less dangerous and easier to treat 

than melanoma cancers. It is also necessary to consider skin cancer when making a diagnosis, as confirmed 

by the statistics for 2019–about 96,480 melanoma cases and 7230 deaths related to melanoma in the US. 

Adolescents and younger individuals often get skin cancer from exposure to ultraviolet (UV) light while 

tanning under the sun. 

It is now believed that Convolutional Neural Networks (CNN’s) perform better than Fully Connected 

networks when handling object detection and bracketing. CNNs now serve for skin cancer diagnosis 

because of accessible processing capabilities and data-learning features. These networks, alongside 

DensNet and Xception  as well as networks that emerged to solve such challenges that classical machine 
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learning encountered because of its manual feature construction complexities. New networks have 

substantially enhanced medical application outcomes related to detection along with segmentation and 

classification results. The networks utilize customized task-specific features by employing learning 

objectives along with loss functions to perform efficient recognition and learning procedures.  Previously, 

scientists utilized manually generated image processing filters to develop features that defined tumor 

cancer characteristics for traditional computer-aided diagnosis systems[6], [7]. The Harris Corner detector 

algorithm proves difficult to train because it demands long periods of work and large memory resources 

when locating images' corners or edges. Studies indicate that less than twenty percent of clinical patients 

receive a melanoma diagnosis through biopsy examinations. Many patients choose not to undergo biopsy 

examinations regardless of disease diagnosis. The diagnosis of skin lesions in diabetics depends on: the 

skin surface being keratinized, the appearance of blood vessel eccentricity, possible ulceration or area 

being burned, and relatives with the condition. Blue, green, purple, brown, gray, yellow, and other colors 

are examples of why shades can be called colors. 

Literature Review 

With rising cases of skin cancer (mainly melanoma) all over the world, there have been many studies on 

early and accurate detection that would employ the use of artificial intelligence. Deep learning and transfer 

learning are among them, and their techniques have become a hot topic as these styles facilitate the 

inspection of highly complicated dermoscopic images[8]. The current chapter summarizes what has been 

done in the past on biomedical skin lesion classification and presents the capabilities and drawbacks of 

different machine and deep learning models. Through an overview of major works, the section provides 

the background of the given approach, focusing on the significance of strong image analysis frameworks, 

the issue of the shortage of annotated medical data, and the potential of convolutional neural networks 

(CNNs) to improve diagnostic accuracy. These lessons are captured in the literature hence they guide the 

process of the design of the skin cancer detection model as described in this study[9]. 

              
            Figure 1: Image from the ISIC 2017 Dataset 

Diagnosis of skin cancer is a rather important problem since the visual distinctions between malign and 

benign lesions could be minor and confusing. An early diagnosis is paramount to the survival of the patient 

but the conventional forms of diagnostic approach (such as dermoscopy and biopsy) are lengthy, invasive 

and require a high expertise of the specialist. The demands brought along by these challenges are 

automated computerized aided diagnostic tools that can assist a clinician in the effectiveness and 

efficiency of diagnosis of skin cancers[10]. Early attempts at computer-aided diagnosis with standard 

machine learning (e.g. support vector machines using manually extracted image features) had only 

moderate success because lesions have a very wide range of appearance. Radical methods of deep learning 



KJMR VOL.02 NO. 06 (2025) ADVANCED SKIN CANCER … 

   

pg. 127 
 

especially Convolutional Neural Networks (CNNs) have brought astounding results on image-based skin 

lesion over the past years in the classification of skin lesions. Instead of the prior techniques that involved 

manual engineering of the features, CNNs learn discriminative visual features by themselves on 

dermoscopic images, resulting in a significant improvement in the diagnostic accuracy. In melanoma 

diagnosis, CNN models became close to being as accurate as dermatologists by the late 2010s and this 

ease of development combined with the importance of the problem is paving the way to deep learning 

entering this field[11], [12].  

Recent studies with limited size dermatology datasets have extensively used transfer learning with CNN 

architecture pre-trained on large natural image datasets. DenseNet, Xception, ResNet, and Efficient Net 

are state-of-the-art CNN models that have been fine-tuned on skin lesion datasets and have demonstrated 

high accuracy in detecting combinations of lesion types (e.g., the ability to distinguish between melanoma, 

basal cell carcinoma, squamous cell carcinoma, and benign nevi). Using pre-trained DenseNet201 or 

Xception networks has shown promising results in terms of separating challenging classes, which is much 

better than earlier shallow classifiers[13], [14]. The variants of Efficient Net that scaled depth and width 

efficiently and which are often preferred in general settings have also been optimized to the dermoscopic 

image classification task, with strong performance and at an optimal size. Along with the changes in CNN, 

Vision Transformer (ViT) models have also been considered a serious competitor in skin lesion analysis. 

Vision Transformers use the self-attention models to images, whereby they can learn long-range 

relationships between the context. According to the 2022 and 2023 studies, ViT-based models were 

capable of either equaling or even performing better (on terms of accuracy) than conventional CNNs on 

the tasks of skin cancer classification[15]. There are also works that combine CNN with transformer, 

contributing convolutional feature-extraction capabilities along with transformer-based attention to 

enhance robustness.  

Transformer-based methods are indicative of a trend to look beyond pure CNNs when handling 

dermatologic imaging. Also, the skin lesions are limited and disproportional to train: malignant cases are 

considerably lower than non-malignant ones. In addressing this, the data augmentation methods, e.g. 

rotations, flips, and color jittering, are consistently used by researchers in order to create plausible 

dermoscopic images, but, more recently, generative adversarial networks (GANs) are also used. Despite 

successful experiments relieving the bottlenecks on dataset expansion and cascade class imbalance using 

GAN-generated images, it was perennially challenging to ensure high picture quality and diversity in 

GAN-generated results, and also necessitate advanced structures of GAN when seeking convincing lesion 

activities. However, augmentation of data has played an important role in enhancing generalization of the 

model and minimizing overfitting in case of fewer instances of some subtypes of cancer[16], [17]. A 

number of standard datasets are available to the analysis of skin lesion and they form the basis of training 

and validation of deep models. The most popular is the HAM10000 dataset with approximately 10 000 

dermoscopic images in seven classes of lesions (including benign and malignant), yet with extremely 

skewed within-class distributions. The International Skin Imaging Collaboration (ISIC) has also published 

publictest and challenge datasets since 2018 containing tens of thousands of dermoscopy images on lesion 

classification as well as segmentation. 

A somewhat smaller but nearby closely-related dataset, Derm7pt, consists of about 2,000 images (and 

associated clinical metadata) concerning the 7-point checklist diagnostic criteria; it has been used as a 

testbed in the multi-modal and multi-label learning literature. Nevertheless, the application of deep 

learning solutions to the problem of skin cancer identification has certain limitations despite its exemplary 

results on made-up datasets. Models tend to not generalize well outside of the domain they were trained 

on: a network trained on one source could exhibit a severe performance reduction when transferred to 

other sources of images, or even to other clinics or patient groups[18], [19]. The prediction on the model 



KJMR VOL.02 NO. 06 (2025) ADVANCED SKIN CANCER … 

   

pg. 128 
 

still suffers imbalance to classes: unless diligently treated, the classifier will skew the result in favor of 

the largest classes and fail to recognize unusual melanomas. Further, deep learning is closest to the black-

box category that makes their clinical application worrying; clinicians will not place faith in automated 

decisions without being able to provide an explainable model. Such problems have led to the development 

of explainability methods (including saliency maps or class activation heatmaps) which point out which 

features influence which a model makes[20], [21]. As of 2023, the state-of-the-art includes CNN-based 

models (enhanced by transfer learning) and a new set of transformer-based models, and a few methods 

approach dermatologist levels of diagnostic performance on controlled datasets. Nonetheless, it is 

necessary to have more classifiers which daily prove to be not only accurate but also more resilient to 

class imbalance and various circumstances of imaging, and offer some sense of transparency in decision 

making. With the above challenges, the current research project develops an enhanced CNN-based model 

of skin classification of dermoscopic lesions depending upon HAM 10000 dataset. This method will be 

used to optimize the classification performance and reliability and will fill the mentioned holes in 

generalization and class imbalance to be closer to the implementation of the actual clinically applicable 

diagnostic tool. 

Materials and Methods 

Dataset 

Our data is just a set of photos showing various types of skin cancer. You need a big dataset when using 

DL methods to ensure good results. Nevertheless, having many images of skin cancer is especially 

important. Also, applying DL algorithms is a significant worry because there can be a shortage of data to 

use for training. It is because of big data that computer-aided tools can recognize and handle small but 

complicated tasks in their jobs. Assessment models for AIbased diagnostics need large, feature-rich 

datasets to be effective and collect diverse data. It has been hard for artificial networks to be part of cancer 

research because there have not been enough cancer-related data available. Since it is hard to efficiently 

collect many examples of different tumor cases, AI networks are left to create artificial data or learn from 

a handful of examples. Since AI networks were first developed, the datasets shown in Table 3.1 have 

always been very important. This chapter provides detailed information about the designs built with the 

HAM10000 dataset, since they are the main concern of this thesis. 

                                       Table 1: Table of Datasets 

Dataset Names  Years of publication and updates Numbers of picturs  

DermQuest 1999 22082 

AtlasDerm 2000 1024 

ISIC archive 2016-2020 25331 

Dermnet 1998 23000 

HAM1000 2018 10,015 

DermIS  6588 

PH2 2013 200 

Methodology flow 

A unified approach to skin cancer classification by using deep learning is proposed; namely, the proposed 

methodology is robust, precise, and adaptive. Beginning with HAM10000, a common preprocessing 

routine like rescaling and normalizing of the images are carried out to renormalize the data. This is then 

followed by the data augmentation approaches such as flipping and rotation, that tackle the class imbalance 

and enhance the generalization of models. Here, the process of transfer learning on pretrained architectures 

(such as DenseNet201 or Xception) is used in order to take advantage of large-scale image datasets in 
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feature extraction. Such features are fed into a fine-tuned dermoscopic analysis custom CNN model. The 

model is tested and is trained on the basis of performance measures such as the accuracy, recall, and F1-

score, and in the end, it results in a robust multi-class classifier that can classify seven classes of skin 

lesions. The approach is efficient both in learning and predicting, and therefore, applicable in the practice 

of dermatology. 

Figure 2: Methodology Flow 

                               

Algorithms used 

The fundamental algorithms incorporated in this research are the DenseNet201, the Xception, and the 

Custom Convolutional Neural Network (CNN) architecture, which have all been used based on transfer 

learning. DenseNet201 is part of the Dense Connected Convolutional Networks (DenseNets). It has been 

described as dense connectivity (with all input layers connected to all previous layers). This type of 

architecture maximizes feature reuse and facilitates gradient flow within training with minimal chances 

of vanishing gradients and overfitting. The application of DenseNet201 to the tasks with limited labeled 

data has high applicability in cases where intricate patterns need to be spotted, but the necessary 

computations cannot be processed using large-scale resources, e.g., skin cancer classification. It can be 

used to effectively categorize between visually multimodal types of lesions, such as melanomas and 

benign nevi, since it was able to learn concise, high-quality representations of dermoscopic images. 

Xception (Abbreviation of Extreme Inception) extends the Inception architecture with depthwise 

separable convolutions in place of regular convolutions. Such modification allows Xception to compress 

the number of model parameters by several orders while preserving a high accuracy. Spatial feature 

learning and cross-channel feature learning are decoupled in terms of their network structure; that is, 

learning fine-grained patterns in skin lesion images becomes more effective and efficient. Xception, in the 

context of this study, can be used as an effective feature extractor in the transfer learning setting, with its 

respective feature maps representing high-resolution and subsequently being used as a feature to the 

subsequent layers of classification. It has a simpler architecture that enables faster training and lower 

memory requirements, which is critical in real real-life clinical setting. 
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In addition to these pre-trained models, a Custom CNN was modeled, and it was examined how a custom 

network could work when it is trained completely new or when it is fine-tuned on dermatologically 

specific training samples. The CNN contains several layers of convolution, each interspaced by activation 

functions (usually ReLU), a layer of dimensionality reduction via max-pooling, and even a last layer of a 

fully-connected layer that gives the probability of occurrence of each of the classes. The sparseness of a 

handcrafted CNN allows refined control over the learning process and allows domain-specific 

optimizations like changing the size of the kernel or the depth of the layers based on the patterns of texture 

and color more common in the dermoscopic image processing domain. The backpropagation will train 

these models, and methods such as RMSprop and Adam optimizers will be used to optimize the models. 

To measure the effectiveness of each model, there are evaluation metrics that are used (i.e., accuracy, 

precision, recall, F1-score, and specificity). Transfer learning is vital in the training process since it enables 

re-use of pre-learned weights on large-scale image datasets as a way to counterbalance the comparatively 

small size of thematic medical datasets such as HAM10000. This study intends to create an automatic 

model that will provide high-performing and generalizable performance by combining pretrained 

networks with a combination of custom CNN and strict training procedures to implement an automatic 

skin cancer classification model across various types of lesions.                        

Results 

The figure found in the text, named Figure 3: Model Precision, shows how the proposed skin cancer 

classification model was trained and validated the accuracy over 100 epochs. The blue curve is the training 

accuracy, and the red curve is the validation accuracy. Based on the graph, the accuracy of this model on 

the training is very high in the initial phase, and the model is close to 100%. That means the model is 

learning the data set of training dataset very well indeed. Nevertheless, the accuracy of validation also 

shows significant variations through the epochs, with a few declines in sharp falls, which are mostly at 

the 15th, 45th, and 60th epochs. Such dips can indicate an interim overfitting condition, in which the 

model will have good performance on the training set but fail to transfer to novel data. Although these 

changes are variations, the performance level of validation is relatively high, with an average of 80 85%. 

The gap between training and validation curves indicates a possible overfitting problem that could utilize 

techniques of regularization like dropout, early termination, or severe data augmentation. The other 

possible reason may be the class imbalance inherent in the HAM10000 dataset, as such an imbalance may 

result in the model being too skewed toward majority classes and not sensitive enough to rare lesion types 

such as melanoma or dermatofibroma. 

However, a fairly smooth learning curve is observed, and it is proven that the model cannot have a problem 

of underfitting since it has managed to learn the characteristics of the training set. The fact that validation 

performance exceeds 70 epochs suggests better generalization that could be caused by the stabilizing effect 

of the optimization algorithm and the freezing of pre-trained layers. In a recap, this number indicates the 

significant learning ability of this model along with the difficulties of sustaining similar validation 

performance when classifying medical images. 

Figure 3 Model precision 
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Figure 4: Model Depletion provides a graphical display of the training and validation loss every 100 

epochs, greatly valuable in understanding the developing behavior in the trained model and its learning 

capability in generalization. The red curve is the validation loss, and the blue curve is the training loss. 

The training loss gradually reduces, yet it is always low, which shows that the model can capture the 

features in the training data. Nonetheless, the validation loss graph is quite volatile, such that just before 

the 60th epoch, there is a sharp increase, and it crosses the 5 marks on the loss scale to revert to stability. 

This abrupt increase in validation loss is a cause of overfitting or temporary instability of the model, 

possibly caused by an inefficient weight update, a learning rate problem, or anomalous data in a batch, 

e.g., that contains an excessive number of challenging samples. Although this anomaly is a rare 

phenomenon, it reveals the tendency of the model to the susceptible to some training dynamics. Besides 

this outlier, the validation loss fluctuates between 0.6 and 1.2, indicating a mild but manageable overfitting 

process during the training cycle. The difference between the training and validation loss curve overall 

also confirms the conclusion reached by the accuracy graph that the model is trained well on the training 

data but has difficulties generalizing to unseen data. They would be partially addressed through the use of 

additional data augmentation, class balancing, or dropout layers. In spite of the fluctuation, the recovery 

and a consequent fall on the level of losses after the spike impulse indicate that the model does not lose 

its learning stability and can be further enhanced in case it is trained within more refined hyperparameter 

conditions. Finally, this value highlights the importance of closely following model performance 

throughout the training process as a means of avoiding overfitting, and also as a means of producing stable 

generalization within the real-life diagnostic setting.                      

 
Figure 4 : Model depletion  

Figure 5: Confusion Matrix is a detailed account of how the model performs based on all the seven skin 

lesion classes with the HAM10000 dataset. Each cell of the matrix represents the true instances (Actual) 

represent versus the predicted ones (Predicted) with each of the classes. The diagonal number indicates 

that the model correctly classifies the values, and the off-diagonal values show the misrepresentation of 

the classes.Based on the table, the model makes excellent suggestions regarding the melanoma (mel) and 

melanocytic nevi (nv) classes with 2013 and 317 accurate predictions, respectively. Such large figures 

indicate good recollection and accuracy in these two categories probably because they are more 

represented in the training data. The dermatofibroma (df) group has a quite good classification accuracy 

with 35 accurate predictions too but there are certain confusions within bkl and mel classes.Mis-

classifications are not severe, but confusing between similar lesion types including bkl and nv or mel are 

harder to differentiate visually. To illustrate, not all instances of nv are properly recognized as such and 

this can pose a risk to patient health because a missed diagnosis of melanoma can be fatal. However, the 

model shows low loss on less frequent classes such as vasc and akiec, which means balanced 

performance.The confusion matrix shows that the model is a high-performing one with a high level of 
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classification skills but the confusion among similar visually classes can be reduced a bit with some further 

adjustments. 

Figure 5 Confusion matrices of DensNet201 

Figure 6: ROC for Skin Cancer Classes demonstrates the Receiver Operating Characteristic (ROC) curve 

of each of the seven categories of skin lesion, which gives an overview of the performance of the model 

in different classes of lesions. The ROC curve graph is a plot of a true positive rate versus a false positive 

rate at diverse settings of the threshold, which gives a visual measure of how well a class assistant can 

differentiate classes. It is worth noting that bcc, df, mel, nv and vasc classes had an AUC of 1.00, this 

denoted that the model perfectly classified the lesions in these classes. This implies that the discriminatory 

ability of the classifier was high between both of these types of skin conditions with a zero and negligible 

mistakes pertaining to all thresholds. The above classes, akiec and bkl had AUCs of 0.99 which is also 

exceptional classification power with minor misclassification. The ROC curves are tight and high 

indicating high sensitivity as well as specificity confirming that the model is an excellent one in classifying 

both malignant and benign lesions. These findings confirm the practicality of the trained model and 

emphasize its applicability in practical diagnostic usages, mainly automated dermatological systems. 

                                                      

                               

 

 

 

 

 

Figure 6: ROC for skin cancer 

Figure 7: Training vs. Validation Loss Curve represents an effective visualization of the model learning 

during 100 epochs. The red graph is validation loss, and the blue graph is training loss. Initial values of 

both losses are high, but during the first 10 epochs, the training loss decreases quickly as it approaches 

the value of zero and remains stable throughout the training. Such a sharp descent implies that the model 

is capable of grasping the characteristics of the training data rapidly; this is a good indication of the 

model being able to reduce error. It will decline at first but settle down at a much greater value as 
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compared to the loss of training and will show a lot of variation throughout training. This chronic 

disparity between training and validation loss suggests that some overfitting has taken place: the model 

is very good at training data but is not learning well to deal with unseen data. The variation of the 

validation loss also indicates that this model can be prone to some data points or that it is experiencing 

high variance. This pattern indicates that techniques like dropout, weight decay, or early stopping 

should be used to regularize the model. It also emphasizes the need to have more data in preprocessing 

or augmentation to support better generalization. Although overfitting occurs, the relatively steady trend 

is an indication that the model is in the converging stages, and hence it has stabilized learning. 

 

Figure 7: Loss of Model 

Figure 8: Comparison Table of Xception and DenseNet201 represents the comparison of the performance 

of the performance of two deep learning architectures against three evaluation metrics, including accuracy, 

average sensitivity, and average specificity. It is clear in the chart that DenseNet201 surpasses Xception 

in all three aspects which indicates that it is better placed to classify skin lesions in our study. In the 

accuracy rate DenseNet201 scores slightly higher with about 97 percent as compared to Xception which 

scores 96 percent. This implies that both models are very good, though DenseNet201 has an edge on them 

in terms of total correct classifications. Such discrepancy is worse in the measure of sensitivity where 

DenseNet201 records approximately 98 percent whereas Xception falls behind with 92 percent. It means 

that DenseNet201 performs much better at recognizing positive outcomes and that it is highly important 

in the context of medical diagnosis where the failure to detect a malignant lesion may lead to serious 

consequences.The specificity rate also provides an advantage in favor of DenseNet201 as it achieves a 

score of 100 percent, whereas Xception only received 98 percent. This indicates that DenseNet201 is also 

quite specific to be utilized in a clinical scenario where the number of false positives should be reduced. 

On the whole, this comparison highlights the fact that DenseNet201 works much better, and thus can be 

used in high-sensitivity and high-precision tasks, including skin cancer detection.                                                      

 

Figure 8: Comparison Table of Xception and DensNet201 
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A deep learning-based framework that delves deep into the early and accurate classification of images on 

skin cancer in the HAM 10000 dataset is proposed and is a very important contribution of the article to 

the field of medical image analysis. The current technology would combine preprocessing, data 

augmentation, and transfer learning by using complex CNN structures, DenseNet201 and Xception. The 

study shows that in extensive experimentation and testing, DenseNet201 performs successfully based on 

such fundamental measures as accuracy, sensitivity, and specificity. Transfer learning plays an effective 

role in solving the problem of the shortage of annotated data, and the confusion matrix and ROC curves 

describing it in great detail confirm the potential of the model to differentiate 7 different types of skin 

lesions in a clinical setting.The paper results in a significant contribution concerning the practical focus 

on the clinical implementation of the model. By giving an insight into the use of DenseNet201 in handling 

both class imbalance and generalization issues, the paper can argue that this method could be used as a 

working diagnostic tool by dermatologists. Further, the comprehensive comparison between Xception 

provides a significant insight of model selection by the medical practitioner and researchers. 

Moving forward, the next stages will involve the expansion of the framework by incorporating more 

datasets and lesion sets in order to increase the robustness of the model. Explainability tools, like Grad-

CAM, will be integrated to offer visual understanding of the decision made by the model, which can help 

adhere to trust in clinical practice. Besides, optimization of lightweight models to work in mobile and 

edge devices may ensure that this diagnostic tool may be extended to under-equipped or distant healthcare 

settings. Other enhancements can also be conducted, such as ensemble learning or hybrid of CNNs and 

vision transformers to advance performance frontiers further. Finally, the given research opens the way to 

the development of intelligent, scalable, and accessible systems of skin cancer detection. 

Conclusion     

The accuracy rates of the available deep learning solutions in skin cancer classification have reached 

high rates, however, some issues like class imbalance, overfitting, and low generalization are remaining. 

This paper fills such gaps and achieves a better representation using CNN-based architecture with 

transfer learning on the DenseNet201 and Xception models. Its greatest strength is establishing that 

DenseNet201 can be used as an ideal model to classify skin lesions with good performance due to 

having high accuracy of 97%, average sensitivity of 98%, and 100 percent specificity, which is way 

above Xception. ROC AUC has values ranging between 0.99 and 1.00 against all the seven classes, 

demonstrating a great deal of reliability of DenseNet201 in the detection of both positive and negative 

cases. These numerical findings prove the strength and stability of the system when applied to reality 

diagnostic and its independence upon the change of the data amount and quality. Also, this article 

presents a well-calculated comparative study, interpretable calculations, and a ready-to-use model to be 

implemented in a resource-limited setup. In general, the model marks a new standard of automated skin 

cancer detection based on deep learning. 
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