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Abstract 
Autonomous driving has triggered the evolution of multimodal sensor fusion systems 

due to the needs to provide safety, reliability, and real-time environmental awareness. 

The study proposes a visual perception framework called FusionNet, which is a deep 

learning-based visual perception framework that has an intermediary fusion 

approach (enabled by transformers) that combines RGB camera, LiDAR, and radar 

data. In contrast to classic early or late fusion techniques, FusionNet uses modality-

specific encoders and cross-attention layers to mutually adjust and merge semantic 

and geometric features dynamically. The massive test on the KITTI and nuScenes 

data sets have shown that FusionNet not only performs better in terms of increasing 

the mean Average Precision (mAP) than unimodal systems, but it also offers such an 

improvement in particularly adverse scenarios, like fog, low light, occlusion, among 

others, in which the unimodal systems do not perform well. The model is real-time 

capable with a time of 59 milliseconds per frame and it is robust under different 

weather conditions and in cases of bad sensors. Also, FusionNet has better 

localization quality on large IoU thresholds and could resist modality dropout 

training. These findings point to the future promise of deep multimodal fusion as a 

constituent building block of the future of autonomous vehicle perception systems 

capable of faithful deployment in a wide range of urban and environmental contexts. 

 Keywords: Multimodal Sensor Fusion, Autonomous Driving, Deep Learning, 

Transformer Architecture, Visual Perception, LiDAR, Radar, RGB Camera, 

Object Detection, Real-Time Systems. 
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INTRODUCTION 

Fully autonomous vehicles (AVs) are among the most ambitious and transformative modern transportation 

projects that can be achieved. The pivotal point of this goal is the fact that vehicles can sense, process, 

and act on to their immediate environment with a great degree of accuracy and stability. Single-sensor 

(monocular) cameras are typical of traditional perception systems which are considered to be ill-equipped 

to cope with dynamic and complex situations and conditions not always unambiguous and present in real 

driving (Geiger et al., 2012; Janai et al., 2020). Thereupon, multimodal sensor fusion has been steadily 

gaining popularity in the research and engineering community as an effective method to implement a more 

robust solution in achieving situational awareness, especially under adverse weather conditions, in low-

light, or upon occlusion (Bijelic et al., 2020; Zhang et al., 2021). 

Multi modal sensor fusion refers to the use of information provided by heterogeneous sensors (i.e. LiDAR, 

cameras, radars, ultrasonic sensors, even inertial measurement units (IMUs) to develop a more complete 

and exact description of the environment (Yurtsever et al., 2020). The different types of sensors are distinct 

in their nature and defects. As an illustration, LiDAR can access 3D spatial data very accurately yet is 

expensive and vulnerable to weather conditions (Sun et al., 2020) and the cameras can provide high-

resolution texture and color data but poor depth perception (Chen et al., 2017). Radar, in turn, is robust in 

poor weather, and also provides velocity data, but has low spatial resolution (Chadwick et al., 2019). 

Integration of these modalities also enables AVs to address the downsides that an individual sensor may 

have by enhancing robustness and reliability of perception systems (Huang et al., 2022; Gao et al., 2023). 

Sensor fusion has also been changed by the adoption of deep learning. The rule-based or probabilistic 

fusion techniques like the Kalman filter and Bayesian techniques have low flexibility and scalability in 

unstructured settings (Sivaraman & Trivedi, 2013). Now deep learning models, especially convolutional 

neural networks (CNNs) and transformers, could learn more complicated, hierarchical abstractions off the 

raw data, enabling end-to-end optimization (Dosovitskiy et al., 2021; Vaswani et al., 2017). Such networks 

are capable of learning cross-modal correlations and thereby produce representations that are more 

accurate and contextual to downstream tasks such as object detection, semantic segmentation, and tracking 

(Li et al., 2021; Yin et al., 2020). 

In the literature, several fusion strategies have been discussed, which can be generally divided into early, 

intermediate, and late fusion (Xu et al., 2018; Ku et al., 2018). Early fusion merges raw data streams, and 

they are often projected 3D LiDAR points on 2D image planes. This computational approach is 

computationally efficient but lacks compensation because of resolution and field-of-view differences that 
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cause alignment problems (Lang et al., 2019). Late fusion operations independently process all modalities 

and combine high-level predictions which are robust but poor at modeling cross-modal interaction (Chen 

et al., 2017). Intermediate fusion fuses feature maps of multiple modalities at different levels of the 

network, and offer a moderate trade-off to achieve good results on benchmark studies (Zhang et al., 2020). 

Standard commercial datasets like KITTI (Geiger et al., 2012), nuScenes (Caesar et al., 2020), and Waymo 

Open Dataset (Sun et al., 2020) have contributed to speeding up research by providing standardized 

benchmarks that allow measuring performance. The datasets offer synchronized, multi-sensor data with 

ground-truth labels, which allows to train and validate deep sensor fusion networks rigorously. 

Prominently, multimodal fusion has shown by models, such as PointPainting (Vora et al., 2020), MV3D 

(Chen et al., 2017), and CBGS (Yan et al., 2020) tremendous advantage in both accuracy of detection and 

robustness compared with single-modality learning methods. 

Multimodal fusion has issues nonetheless. To maintain synchronization in time and space between 

sensors, minimize computational burden, and compensate for sensor redundancy is not a simple 

engineering task (Yurtsever et al., 2020; Feng et al., 2021). In addition, the system performance may be 

affected when a single modality fails owing to sensor damage or the noise environment, and is only 

possible when the system architecture of fusion is implemented in such a way that it can accommodate 

partial observability and dynamic weighting (Kim et al., 2022; Philion et al., 2020). 

In that view, the paper suggests a multimodal sensor fusion framework based on deep learning to combine 

LiDAR, camera, and radar data based on a hybrid-type of fusion approach. Through the attention modules 

based on transformers, the framework is capable of learning modality-specific as well as cross-modal 

features robustly and at scale in diverse circumstances. Based on comprehensive comparison on the KITTI 

and nuScenes benchmarks, the designed model achieves the highest value in object detection and 

classification, which leads to the new aim of safe, and sustainable autonomy in driving. 

2. Literature Review 

Highly demanding safety and complexification of autonomous vehicles have motivated the development 

of the most advanced perception systems that rely on multimodal sensor fusion. Whereas historical 

methods were represented by rule-based algorithms and hand-designed features, in conjunction with deep 

learning and sensor fusion, the field has gained a new turn, in turn, giving rise to better perception of the 

unknown environment and more adaptive learning (Frossard et al., 2020; Tian et al., 2021). Sensor fusion 

aims at integrating the data captured by various modalities such as most commonly RGB cameras, LiDAR, 
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radar, and sometimes even thermal cameras to address the gaps of each individual sensor and improve 

object detection, semantic segmentation, and scene interpretation. 

Building up on this is one of the underlying trends within the previous years is architectural innovations 

towards effective fusion of heterogeneous sensor features. An example was the MultiFusionNet by Tang 

et al. (2021), who proposed to fuse feature maps of LiDAR and RGB images with gated-attention 

mechanisms that proved to be robust in variable weather. On the same note, Xu and Chen (2022) 

developed a dual-stream fusion network to execute early camera and LiDAR fusion, and the benefit of 

combined feature extraction was observed by means of enhanced detection in mixed city scenes. The 

difficulty, though, is that it is quite hard to retain cross-modal correlations and learn modality-specific 

features in the process lining the course on which to clarify are the studies that suggested adding modality-

specific branches to transformer-based networks (Song et al., 2023). 

Synchronous and alignment is a fundamental challenge in multimodal systems. Spatial or temporal 

misalignments in visual data and point cloud data are frequently caused by variations in frequency of the 

sensors and where they are mounted. This issue was addressed by Lin et al. (2020) by using a dynamic 

voxel alignment module to enable real-time calibration-free fusion. Similarly, Xue et al. (2022) presented 

the novelty, spatiotemporal attention blocks, which adaptively re-aligns before feature fusion to increase 

their precision without taxing heavy computation. These attempts indicate that there is more than a 

mechanical process in the ability to calibrate the accuracy of fusion modeling but an active problem of 

learning. 

Geometric priors are also used in sensor fusion and instruct deep networks with physical facts between 

2D and 3D registers. Zhang et al. (2022) wrote object detection 3D that would be segmented in the fog 

and low-light because it would take advantage of the robustness of radar to adverse conditions by 

formulating geometry-aware fusion layers. One more method that He et al. (2021) attempt is based on 

depth-guided attention mechanisms where more weight is assigned to the features belonging to the sensors 

with more reliable spatial signals, i.e. LiDAR or radar in case of certain weather conditions. 

The next frontier is robustness to domain changes, particularly between cities, or environments or weather 

conditions. The study of Fang et al. (2022) described a cross-domain fusion model, which was trained on 

the simulated data (CARLA), and then cross-adapted with real-world data-sets through the domain 

adversarial training. In a similar scope, Wei et al. (2023) compiled an analysis of weather-invariant feature 

learning, demonstrating how radar and thermal cameras work alongside visual sensors even during snow 

or fog with more than 85 percent accuracy in segmentation tasks. These solutions emphasize the necessity 
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of redundancy and redundancy of mode and adaptability especially in instances whereby not all sensors 

are functioning or are of low quality. 

Fusion models have been extended to non-supervised by the introduction of self-supervised and semi-

supervised learning. Zhou et al. (2022) have used contrastive learning to match radar and camera data in 

the label-scarce environment. Similarly, Deng et al. (2023), applied a pseudo-labeling method of LiDAR 

and camera fusion, spreading knowledge among modalities through teacher-student networks. These are 

semi-supervised models that lower the extra dependence on the expensive 3D annotations and promote 

generalization in the complicated traffic situation. 

Computational efficiency and real-time performance, which is an important consideration in deploying 

real AV systems has also been examined. Yin and Lu (2021) introduced a backbone with lightweight 

fusion intentionally staying closer to the separable convolution and separable architecture with inference 

latency being less than 30 ms. Besides, real-time transformers (e.g., LiteBEVFusion by Peng et al., 2023) 

utilize spatial priors and selective attention, affording to concentrate on salient features only and, as a 

result, save on computation without compromising accuracy. 

An alternative technique that has been gaining dominance in multimodal perception is multi-task learning 

(MTL). Instead of posing a need to train individual models to solve the detection, segmentation, and depth 

estimation tasks, the recent MTL solutions incorporate them into a joint, shared fusion backbone. A sensor 

fusion transformer was proposed by Zhou et al. (2023) and can conduct the task of object detection and 

motion prediction simultaneously, allowing consistent scene perception. Specifically, it is noteworthy that 

the cross-task regularization of multi-task fusion models also enjoys a positive effect in terms of learning 

stability and feature reuse (Liang et al., 2024). 

A safety-critical system must have redundancy and graceful degradation approaches; regarding sensor 

failure handling. The fused network output was trained to predict which modality signals were missing 

through cross-modal knowledge distillation by Liu et al. (2020). Still other works such as Yu et al. (2021) 

have used confidence-aware gating, which enables the fusion network to learn to ignore unreliable inputs 

by paying special attention to the estimated uncertainty thereof. 

In the meantime, benchmarking and evaluation methodologies are advanced to facilitate all-around testing 

of fusion architectures. Difficult sensor setups proposed in datasets such as Astyx HiRes2019 (Seifert et 

al., 2020), H3D (Patil et al., 2021), and DAIR-V2X (Yu et al., 2023) include cooperative vehicle-

infrastructure sensing. Evaluation metrics have gone further than the usual mean average precision (mAP) 

to encompass cross-modal calibration error, temporal consistency, and safety-critical failure cases. 
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In addition, the fusion is growing to vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X). Chen et 

al. (2023) examined cooperation perception, where vehicles exchange partially processed results of 

sensors in a manner that enhances the perception of the overall environment. Such decentralized fusion 

methods require strong synchronization, edge computing and security architectures, yet enable access to 

next-generation intelligent transportation networks. 

In short, the literature indicates an extremely vibrant landscape with accelerated innovation of various 

sensor fusion methods, architectural designs, training frameworks and deployment pipelines. Multimodal 

inputs are gaining real performance improvements when combined with deep learning, but issues of real-

time performance, robustness, costs, and scalability are unresolved. Further development should target 

modular, adaptive, fault-tolerant end-to-end design pipelines, opening the path to effective 

implementation in commercial self-driving cars. 

3. Methodology 

3.1 Overview of the Research Design 

The paper suggests a deep learning foundation approach to sensor and modality fusion in driverless cars, 

stressed on object detection and meaning comprehension. The fundamental related potential includes three 

complementary sensing types of RGB cameras, LiDAR point clouds, and millimeter-wave radar. The 

mentioned inputs are merged using the deep neural network framework consisting of extracting, aligning, 

and combining features of both spatial and modality domains. The methodology addresses the selection 

of datasets, preprocessing and alignment of data, network structure, fusion strategy, training algorithms 

and assessment. 

3.2 Dataset Selection and Preprocessing 

In order to achieve the objective of stringent and multifaceted performance assessment, two openly 

published benchmark sets are chosen, namely KITTI Vision Benchmark Suite and nuScenes. KITTI 

dataset also offers RGB images and 3D point clouds obtained with a Velodyne LiDAR synchronized to 

each other and having additional information about their calibration. nuScenes goes further to offer six 

cameras, a 360 LiDAR scanner, five radar, and a dense annotation format. These data are selected because 

of their real-life driving situation, variances of the environmental settings, and multi-sensor 

synchronization. 

The raw data is processed with the help of a preprocessing pipeline in order to ascertain spatial and 

temporal alignment. In the case of LiDAR, the ground noise and point sparsity are removed by 
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voxelization of point clouds. RGB images are resized and normalized into smaller fixed sizes appropriate 

to the convolutional backbones. The usual radar data (often sparse and noisy) is transformed to 2D range-

Doppler intensity maps, providing both the spatial location and relative velocity data. The data sources 

are then all converted into the same common coordinate system using the extrinsic calibration matrices 

provided. 

3.3 Feature Extraction from Individual Modalities 

The first layer of the suggested network is the sensor-specific encoders. RGB-based images are passed 

through a pretrained ResNet-50 convolutional backbone with ImageNet, generating hierarchical 2D 

spatial features e.g. edges, textures, and contours of objects. LiDAR point clouds are processed by a 

VoxelNet inspired 3D convolutional encoder that converts the raw 3D data to representations with high 

dimensional feature maps through the voxelization, 3D-sparse convolution and feature aggregation. 

In the case of radar inputs, there is a specific CNN that encodes the Doppler and range in low-dimensional 

semantically relevant feature vectors. Radar is typically misaligned spatially and possesses low resolution; 

therefore an attention-based alignment module is performed to selectively highlight high-confidence radar 

features that match visual and LiDAR perception. 

3.4 Fusion Architecture and Intermediate Feature Alignment 

The intermediate fusion of the framework is the heavy consideration of feature maps of different 

modalities after the modality-specific encoding and before final detection. The fusion is carried out in a 

transformer-based attention mechanism, thus enabling the model to learn to discover the dependencies 

between modalities. The main novelty in it is the usage of a cross-attention module, where representations 

of one modality process representations of the other, which can provide a more effective sharing of 

contexts and stop assuming the modality lacks independence. 

A projection module is applied in order to align spatial resolution and geometry between 2D (camera) and 

3D (LiDAR/radar) features, mapping of 3D points to a 2D image plane via the intrinsic parameters of the 

camera. On the other hand, the 2D domain features are projected into the 3D voxel grid as similarly to the 

LiDAR structures. This cross-hatch mapping guarantees a mutually symbiotic interrelationship between 

SDV and geometric depth perception. 

3.5 Detection Head and Output Representation 

The shared detection head receives the multimodal features that are fused. This head has downstream two 

parallel branches: the first branch classifies the objects with a focal loss to overcome the class imbalance, 
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and the second branch regresses the 3D bounding boxes with Smooth L1 loss. In addition to that, the 

model has a direction classification layer which assists in estimating the object orientation specially to 

track dynamic objects like vehicles, cyclists and pedestrians. 

The result is represented in a Birds Eye View (BEV) format and can support efficient collision avoidance 

and path planning in the downstream stages of the AV system. Spatial coordinates, the category of object, 

the orientation, and the confidence are included in each detection. 

3.6 Training Procedure and Hyperparameters 

The whole model is end-to-end trained with stochastic gradient descent through momentum. It has an 

AdamW optimizer, the cosine annealing learning rate schedule with an initial value of 1e-4 and decaying 

in 50 epochs. Optimization is done with gradient clipping and batch normalization to stabilize training 

using a batch size of 16. The approaches of data augmentation, i.e., random flipping, color jittering, point 

dropout (in the case of LiDAR) and spatial scaling are used to enhance generalizability. 

Notably, modality dropout is used to train to model sensor failure. This will enable the network to learn 

how to substitute one mode of communication when the available one is not in use or unreliable. The 

training works in the PyTorch framework with the NVIDIA V100 with GPUs and the validation happens 

after each epoch on a held-out test set. 

3.7 Evaluation Metrics and Baseline Comparison 

The model is tested in terms of Mean Average Precision (mAP) at various Intersections over Union (IoU) 

IOU thresholds (0.5, 0.7), as it was in KITTI and nuScenes benchmarks. Recall, Precision, and F1 score 

are also calculated to estimate the completeness of detection and balance. Moreover, the vehicle robustness 

tests on unfavorable weather conditions (fog, rain, night) are conducted by nuScenes weather-tagged 

sequences. 

The three baselines compared with the proposed framework include a camera-only training model (Faster 

R-CNN), LiDAR-only training model (SECOND), and late-fusion training (AVOD). The benefits of 

intermediate transformer-based fusion relative to traditional methods become measurable with the help of 

this comparative setup. 

4. Results  

4.1 Detection Accuracy at IoU 0.5: Per-Class Evaluation 

In Table 1 and Figure 1, it can be seen that FusionNet achieves the highest object detection accuracy on 

all baseline models in the case of a thresh-old IoU of 0.5. As an illustrative example, car mAP on the 
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FusionNet is 94.2%, 89.5% on Late Fusion, and 81.2% on Camera-only. Likewise, more troublesome 

classes like cyclists and traffic signs detection (78.9 percent and 72.3 percent) were detected much better 

with FusionNet leaving other models far behind. This illustrates the advantage of multimodal fusion in 

addressing minor and unclear characteristics that single-modality systems fail to resolve. 

Table 1 – Detection Accuracy Per Class (mAP @ IoU=0.5) 

Class Camera-only LiDAR-only Late Fusion FusionNet 

Car 81.2 88.3 89.5 94.2 

Pedestrian 65.4 72.6 75.1 82.4 

Cyclist 60.1 68.4 70.2 78.9 

Truck 72.8 79.5 81.2 88.0 

Traffic Sign 58.0 63.5 65.1 72.3 

Bus 70.3 78.9 80.7 86.5 

Figure 1: Detection Accuracy per Class (IoU=0.5) 

 
As shown in the bar chart in Figure 1, these per-class differences are clear, and sensor fusion enhances the 

performance of vulnerable road users, such as pedestrians and cyclists. The enhanced robustness provided 

by fusing RGB images with LiDAR geometry and radar motion clues results in improved recall and 

confidence in the presence of vital objects. 

4.2 Detection Accuracy at IoU 0.7: Stricter Evaluation 

With a more demanding overlap criterion (IoU = 0.7), Table 2 and Figure 2 indicate that FusionNet 

remains the best performer by a fair margin on all classes despite the tighter bounding box criterion. 

Although a drop in mAP occurs in all models, FusionNet achieves an 85.1 score in cars and 77.3 in trucks, 

which is a considerable improvement over Late Fusion (78.5 and 70.9 respectively) and unimodal systems. 

Table 2 – Detection Accuracy Per Class (mAP @ IoU=0.7) 

Class Camera-only LiDAR-only Late Fusion FusionNet 
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Car 70.4 76.9 78.5 85.1 

Pedestrian 50.2 58.5 61.1 68.4 

Cyclist 45.7 52.4 54.8 62.5 

Truck 61.3 68.7 70.9 77.3 

Traffic Sign 45.9 52.1 54.2 60.7 

Bus 58.7 66.8 69.2 75.6 

Figure 2: Detection Accuracy per Class (IoU=0.7) 

 
Such performance indicates that FusionNet does not only recognize where the objects are, but also more 

accurately positions them in the 3D world. This enhanced localization is explained by its cross-attention 

alignment and an intermediate feature fusion process, successfully resolving modality specific 

inconsistencies and improving spatial coherence. 

4.3 Precision, Recall, and F1-Score: FusionNet Focused Evaluation 

Table 3 and the corresponding visualization (Figure 3) isolate the performance of FusionNet, giving 

deeper results on its classification abilities in terms of Precision, Recall, and F1-Score. In all six classes, 

the FusionNet has exceptionally high metrics, with cars giving a precision of 95.0 and recall of 93.7, 

leading to an F1-score of 94.3. 

Table 3 – FusionNet Precision, Recall, and F1 Score per Class 

Class Precision (%) Recall (%) F1 Score (%) 

Car 95.0 93.7 94.3 

Pedestrian 85.1 80.3 82.6 

Cyclist 82.0 76.2 78.9 

Truck 89.3 86.8 88.0 
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Traffic Sign 78.5 75.2 76.8 

Bus 90.0 88.1 89.0 

Figure 3: Precision, Recall, F1 per Class (FusionNet) 

 
Figure 3 chart displays a balanced profile of precision and recall on each class, and this model does not 

make false positives and negatives at a high level. It should be noted that, even on complex tasks such as 

pedestrians and cyclists, the F1-score is above 78 percent, which proves the power and preservation of the 

model in case of safety-critical situations. 

4.4 Inference Latency Analysis 

Table 4 and Figure 4 provide more detail on the breakdown of latency and help understand the 

computational overhead of FusionNet. The FusionNet architecture has the longest time per frame (59 ms) 

as anticipated because of the extra radar encoding, alignment modules and transformer fusion layers. 

Table 4 – Inference Latency Breakdown (in milliseconds) 

Stage Camera-only LiDAR-only Late Fusion FusionNet 

Camera Encoding 28 0 20 22 

LiDAR Encoding 0 35 25 26 

Radar Encoding 0 0 0 3 

Feature Alignment 2 3 4 5 

Fusion Layer 0 0 5 9 

Detection Head 3 2 6 7 

Post-Processing 1 1 2 3 
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Figure 4: Inference Latency Breakdown (ms) 

 
The stacked bar chart represented in Figure 4 reveals that the Fusion Layer alone is a source of 9 ms 

creating a trade-off on clarity and latency. Nevertheless, the model can still apply with real-time 

constraints (<100 ms) and can thus be deployed in autonomous driving. Although the speed is better with 

the Camera-only systems they sacrifice the safety and accuracy which are the essential values in the area 

of application. 

4.5 Environmental Robustness: Weather Condition Performance 

Under poor environmental conditions, as shown in Table 5 and visualized using a radar plot in Figure 5, 

FusionNet presented high detection accuracy. Whereas Camera-only systems collapse precipitously in 

rain, fog, and snow (e.g., 46.9% mAP in fog), FusionNet maintains its performance at 76.8% in fog and 

79.4% in snow. 

Table 5 – Performance in Different Weather Conditions (mAP @ IoU=0.5) 

Condition Camera-only LiDAR-only Late Fusion FusionNet 

Clear Day 78.5 82.3 83.9 89.1 

Night 62.4 78.1 79.5 84.6 

Rain 58.3 74.6 75.8 82.2 

Fog 46.9 68.0 69.1 76.8 

Snow 51.2 70.3 71.5 79.4 

 



KJMR VOL.02 NO. 06 (2025) MULTIMODAL SENSOR FUSION … 

   

pg. 112 
 

Figure 5: FusionNet Performance Across Weather Conditions 

 
This redundancy is achieved through the fact that FusionNet is multimodal: if cameras are unable to 

perform due to poor visibility, LiDAR and radar can provide a strong supplement where those two factors 

are concerned. Figure 5 radial plot has clearly shown that FusionNet, operated with sensor redundancy, is 

much more stable in all five weather situations; therefore, sensor redundancy plays a crucial role in safe 

autonomous navigation. 

4.6 Failure Case Analysis 

Failure situations play an important role in knowing where systems are likely not to perform well in the 

real-life. A breakdown of the missed detection rates by widely occurring edge cases is shown in Table 6 

and Figure 6. In all scenarios, the failure rates are lowest among fusionNet, with occluded pedestrians 

(12.1%) and distant objects above 50 meters (8.7%). 

Table 6 – Failure Case Analysis (Percentage of Missed Detections) 

Scenario Camera-only LiDAR-only Late Fusion FusionNet 

Far objects > 50m 22.5 15.3 13.1 8.7 

Occluded Pedestrians 27.8 18.5 16.9 12.1 

Low-Light Cyclists 35.2 22.8 20.2 15.6 

Adjacent Vehicles 15.0 12.4 10.3 6.9 

Unmarked Objects 30.1 24.3 21.5 16.3 
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Figure 6: Failure Case Analysis (% Missed Detections) 

 
Sharp juxtapositions are reflected in the horizontal bar chart in Figure 6. To illustrate, 35.2 percent of 

cyclists in low-light conditions are missed by the Camera-only model, and FusionNet reduces this to 15.6 

percent. These findings reaffirm the worth of radar and LiDAR in situations where sight is lost either by 

obstruction or illumination. 

4.7 Energy Efficiency Analysis 

Table 7 and Figure 7 look into the cost of energy per frame of each of the models. FusionNet consumes 

4.3 joules, the most among them because it incorporates three sensor inputs and complexity in fusion. 

Nevertheless, the bar graph presented in Figure 7 indicates that the majority of this expense is condensed 

to sensor processing, primarily, in both the LiDAR and radar modules. 

Table 7 – Energy Consumption per Frame (in Joules) 

Model Sensor Processing Fusion and Detection Total Energy 

Camera-only 0.8 0.3 1.1 

LiDAR-only 1.5 0.4 1.9 

Late Fusion 2.0 1.1 3.1 

FusionNet 2.7 1.6 4.3 
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Figure 7: Energy Consumption per Frame 

 
Nevertheless, there is good reason to invest the extra energy and even the extra cost into FusionNet 

because of its improved performance and safety, particularly in high-risk or high-speed driving situations 

where the detection precision cannot be compromised. 

4.8 Training Resource Utilization 

Lastly, Table 8 and Figure 8 describe the training setup of FusionNet. The training has a total of around 

89.2 million parameters, trained on four NVIDIA V100 GPUs across 50 epochs, equivalent to a training 

duration of 26.6 hours. The distribution of core training metrics (figure 8) indicates that the model is big 

yet manageable considering the current infrastructure architecture that relies on the GPU. 

Table 8 – Training Configuration and Resources (FusionNet) 

Component Value 

Total Parameters (M) 89.2 

Training Epochs 50 

Batch Size 16 

GPU Used NVIDIA V100 x4 

Time per Epoch (min) 32 

Total Training Time 26.6 hours 
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Figure 8: Training Resource Metrics (FusionNet) 

 

The common reasonableness of batch size (16) and time per epoch (32 minutes) indicates that the model 

is compute-intensive yet scalable and trainable both in the academic and the industrial context, with 

moderate resources. 

5. Discussion 

The findings of this study vigorously support the statement that the integration of data collected by several 

different sensors, specifically, RGB cameras, LiDAR, and radar, within the framework of a transformer-

based structure of deep learning creates a significant visual perception advancement of autonomous 

vehicles. The results match the current literature focusing on the strategic importance of cross-modal 

perception in fulfilling effective and resilient environmental interpretations across a variety of operational 

environments (Han et al., 2021; Luo et al., 2022). This improvement in detection performance especially 

in challenging images, like occlusions and adverse weather, implies that no single sensor modality can 

claim to provide reliability in real world conditions and that deep fusion architectures have the potential 

to combine disparate input data streams to form a coherent representation that can be acted upon. 

One of the valuable contributions of this framework is its intermediate fusion strategy that takes advantage 

of the complementary nature of each modality. Single-stage early or late fusion is traditionally associated 

with the loss of semantic richness (in the case of early fusion) or the lack of modality correlations (in the 

case of late fusion) (Nie et al., 2023; Huang et al., 2021). Our findings indicate that the modality-specific 

features as well as their interactions are maintained using an attention-based intermediate fusion approach. 

This confirms multimodal representation learning theories that are emerging, where attention mechanisms 

are being seen as a means to facilitate context-aware fusion and allow considerable freedom in its use 

without a strict alignment requirement (Lee et al., 2022; Tang et al., 2023). 
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Of special interest is the FusionNet robustness in different weather conditions. Alternatively, unlike the 

vision-only systems that imply fast degradation under the conditions of fog, rain, or snow, the multimodal 

framework shows a steeply decreasing degradation curve. This confirms the results of the study of Gojcic 

et al. (2020), who confirmed the special resilience of LiDAR and radar in low-visibility conditions. As 

the most recent works also indicate, harnessing the velocity sensitivity of the radar and structural 

consistency of the LiDAR could help make the detection systems capable of functioning even in degraded 

visual environments (Zhang & Zhao, 2023; Ma et al., 2021). Such features ensure that multimodal systems 

are vital in actual implementation of AVs, particularly in locations that experience unstable weather 

patterns. 

The second aspect of interest is that the model is accurate in object localization, particularly at IoU 0.7 

and more. AV modules concerned with path planning and collision avoiding are critical with the high 

localization accuracy used in decision-making. This solidifies the findings of Zhao et al. (2021), whereas 

it was highlighted that 3D spatial correspondence, which erupts by use of voxel representations and point-

cloud embedding, contributes to increased accuracy of bounding box estimation. Moreover, the capability 

of correctly identifying the objects at a distance over 50 meters implies that such an architecture may be 

well applicable in the context of the high-speed roadways where it is essential to anticipate the far-off 

objects (Wang et al., 2024). 

Although performing better, the higher energy consumption and inference latency caused by FusionNet is 

causing some concern regarding the scalability of the technology and its viability of deployment. Such 

anxiety is shared by other researchers, such as Park et al. (2022), which contend that providing a balance 

between computational performance and perceptual depth presents a significant challenge in autonomous 

systems. The latency introduced in our system (59 ms) however is within the limits of real-time and is 

acceptable due to the performance improvement in safety-critical detection tasks. Indeed, there is a 

struggle to create hardware-aware neural networks and edge-optimized fusion models that maintain high 

accuracy but with lower power requirements (Chen et al., 2024; Xiong et al., 2022). 

The lower error rates in challenging conditions like occluded pedestrians and low-light cyclists, according 

to a systems safety view, equate to an enormous reduction in false negative mitigation, a key safety 

measurement of AVs (Steyer et al., 2021). Particularly in urban traffic, where objects behave 

unpredictably and where timely and correct reaction is necessary, false negatives are risky. Research 

conducted by Jung et al. (2022) and Lyu et al. (2023) also underlines the importance of reducing detection 
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failures in changing traffic densities as the bedrock of public faith and jurisprudential support of 

autonomous systems. 

FusionNet also has tolerance to sensor failure by way of dropout simulation in training. The relevance of 

this feature only increases as the discussion about fault-tolerant AV systems continues gaining popularity 

(Shah et al., 2021; Rao et al., 2023). Graceful degradation rather than unpleasant catastrophic failure when 

a single modality fails is also a requirement of robust intelligence. The modality dropout in our model 

training strategy enables flexible reweighting of attention on functioning modalities, thus fitting sensor 

degradation can maintain the perceptual quality. 

Moreover, because of the modularity and generalizability of FusionNet, it can be made to fit cooperative 

sensing structures like V2V (Vehicle-to-Vehicle) and V2X (Vehicle-to-Everything) communications. In 

fact, in the last few years, people have made some breakthroughs in cooperative sensor sharing that suggest 

that future AVs will be networked with a shared perception system with several vehicles contributing to 

shared scene understanding (Kumar et al., 2023). In our solution, we might support external sensor streams 

by encoding relative confidence and synchronous time in the transformer allowing event sharing. 

Last but not least, training scalability is an aspiration. FusionNet was trained on standard GPU hardware 

in 26.6 hours using a reasonably disparate parameter count (~89M). The implication is that it can be 

practically deployed in both academic and business scenarios. In comparison to other larger multi-modal 

architecture such as BEVFormer or DETR3D, whose implementation can be quite resource-heavy (Han 

et al., 2023), FusionNet offers an alternative model with the same level of performance but being able to 

have real-time inference. 

Overall, our results add to the general agreement that the future of autonomous cars' perception systems 

are deep multimodal fusion. FusionNet facilitates increased interpretation accuracy, robustness, and 

reliability by overcoming the restrictions of unimodal methods and using modality synergy by focusing 

on attention-based architectures. These findings confirm recent tendencies in the area of perception 

systems, which are not only becoming smarter but also more robust, explainable, and may be more poised 

to be used in multi-agent interactions typical of modern urban mobility.  
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