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Abstract 

Cardiovascular disease (CVD) is one of the dominant causes of morbidity 

and mortality globally, promoting pressing needs for early, accurate, and 

efficient detection approaches. Traditional models (e.g., logistic regression, 

decision trees) yield crude absolute risk estimates that do not account for 

complex interactions of clinical, genetic, and lifestyle variables. In this study, 

we attempt to enhance the cardiovascular prediction using the Deep learning 

models, such as the Convolutional Neural Networks (CNN)6, Recurrent 

Neural Networks (RNN)7, and Deep Neural Networks (DNN)8. 70,000 

records 2 12 dockized models of Deep Learning for predicting the probability 

of a heart attack. Dataset -Kaggle Cleaned and Balanced (age, blood pressure, 

cholesterol, and habits). The best test accuracy among them achieves up to 

88.5% by a CNN model, and the precision-recall-F1-score is all more than 

85%. As demonstrated, in terms of learning non-linear patterns and 

representing the high-dimensional information, the Deep learning framework 

significantly surpassed the traditional methods. While CNNs worked well on 

tabular features, RNNs added value when capturing time series for 

longitudinal prediction. Strengths and limitations. Though it had many 

strengths, the study did have some limitations, which included model 

interpretability, imbalanced data, and generalizability to demographics. The 

limitations of Deep learning from a computational standpoint and the lack of 

real-world validation were also discussed. In future work, we plan to further 

explore the hybrid CNN-LSTM models applied with the consideration of 

dynamic EHR, fairness for different age and ethnic groups, and also to 

introduce federated learning for privacy-preserving clinical deployment. This 

research demonstrated that Deep learning could have a dramatic 

transformation on precision medicine, enabling more accurate, scalable, and 

individualized risk assessment of CVD for early prediction, presymptomatic 

care, and clinical systems resources deployment. 
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Cardiovascular Disease (CVD), Deep Learning, Convolutional Neural 
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Introduction 

Recently, the application of Deep learning in health care has changed the way diseases are diagnosed, 

monitored, and forecasted. One of the most interesting potential application fields is that related to the 

CVDs risk prediction, particularly interesting, especially timely, because the CVDs are currently the 

number 1 cause of death among the entire humanity. Many of us know someone who has suffered from 

— or who has had someone they love suffer from — a heart attack, a stroke, or some other form of 

cardiovascular disease. These diseases affect millions of people each year, and often appear without a 

clear warning sign. Hence, the need for smarter, more precise, and predictive health care solutions is 

increasing [1]. Current CRFs (conventional risk factors), while being widely accepted, fail to explain the 

complex, multi-faceted aspect of CV risk, which is the net outcome of a number of genetic, lifestyle, 

clinical, and demographic dimensions. As a result, the adoption of Deep Learning methods, especially 

neural network structure models to the continuous improvement to the risk prediction of CVD is a notable 

breakthrough [2]. 

Huge EHRs and wearable sensor data freely available in open-source databases make the fact that it is 

quite possible to train models that require heavy data, like CNNs, RNNs, and DNNs. These models are so 

effective because they’re excellent at learning from raw, unstructured data, and identifying any latent 

features that just wouldn’t be obvious through more typical statistical methods. CNNS a name for itself 

by learning spatial features efficiently from clinical tabular data. Similarly, RNNs, LSTMs can work on 

sequential, time-series data, making it easy to perform longitudinal analysis of patients' health trajectory 

[3]. Nevertheless, despite the great progress in CVD prediction, current predictive models suffer from 

several limitations. The majority of classical statistical techniques (e.g., logistic regression, Framingham 

Risk Score) are primarily static and do not integrate nonlinear relationships among the variables, nor do 

they facilitate the inclusion of interactions among the variables. Such models usually rely on particular, 

unalterable risk factors age, blood pressure, whether you smoke, and your cholesterol levels, while 

ignoring more general responses, such as genetic predisposition, psychological stress or changing health 

trends. When a non-personalized approach is adopted, then the risk projection is for the entire population, 

and therefore, for all the potential patients, and does not consider the condition of a patient at a given point 

in time, nor its evolution over time [4]. DL models, however, can learn high-dimensional input features 

and may allow for more individualized and time-varying risk predictions. 

An important advantage of Deep learning is its hierarchical learning. ( you can consider it as you need to 

determine which latent features to use yourself). neural network can 'learn' useful features from raw input 

data and features extraction is not manually handled[5]. For example, when it comes to cardiovascular 

prediction a deep neural model can uncover the relationships between age, cholesterol, blood pressure, 

BMI and life habits and it can predict CVD in a way better than other models. In addition,300 the models 

such as CNNs and DNNs can outperform the conventional methods of classification measures, recall, 

and-and precision important performance indicators while handling life-threatening diseases such as heart 

disease[6]. There are however significant challenges that Deep learning methods have to address. The 

interpretability of the model is a major concern. The highly non-linear internal representations learned by 

Deep learning models on which predictions are based has led to this description as "black box" systems, 

as well as to the clinician's inability to evaluate why a prediction was made having been made [7]. The 

lack of interpretability of the learning models utilized in the current medical application might lead to a 

limitation of trust and adoption in real-world healthcare, where interpretability may have to be taken into 

consideration for clinical decision making[8]. This has been partially mitigated in the recent work using 

explainability techniques such as SHAP (Shapley Additive explanation), LIME (Local Interpretable 

Model-agnostic Explanations) and Grad-CAM (Gradient-weighted Class Activation Mapping) that 

provide insight on which features are more important for the output of the model[9]. 
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The imbalance and quality of the data is also one of the difficulty. Biased Towards Majority Class Skew 

class distribution is one common issue in medical dataset, the number of non-CVD cases is larger than 

CVD cases, this could produce bias prediction toward majority class. And models can be learned less 

precisely when there are some missing values, noise and inconsistences in the input features[10]. To deal 

with these challenges, careful pre-processing steps, including outlier handling, imputation methods, 

feature scaling, and data augmentation, are necessary. Over-sampling balance methods (e.g. SMOTE) and 

normalization methods such as min-max scaler or z-score normalizer are widely used to balance the class 

frequencies distribution to make and to avoid imbalances of feature weights per class on the training 

stage[11].  

The accuracy of any predictive model critically depends on the quality of the training data. For predicting 

CVD, age, sex, ethnicity and region varied representation of population as possible should be on set to 

dataset. This is important to ensure that the model generalizes well to and among various populations 

wells [12]. But the most the methods were learned from homogeneous datasets will produce biased results, 

which have poor generalization capability. In response, an increasing number of researchers are 

advocating for more inclusive data collection practices and using transfer learning to adapt models trained 

on one population for another. These approaches help ensure greater fairness and accuracy among 

subgroups, is a key aspect of transparent AI in medicine[13]. 

There are also ethical concerns concerning large scale Deep learning models used in health care. There 

are privacy, consent, and data security concerns associated with use of personal health data. Anonymizing 

of patient information must be conducted and adhered to the highest security levels and utilized only for 

the purpose for which it was stored [14]. Methods like federated learning and differential privacy are 

gaining traction in this regime. Federated learning federated learn; mcmahan2017communication without 

the data To train models based on a set on decentralized devices or servers with local data samples, a 

model is trained. This helps protect users’ sensitive health data on the device and reduces the risk of 

exposure [15]. 

Differential privacy uses mathematical tricks that keep you from being able to “de-anonymize” a database, 

even given a training or query of a model. 

CVD is generally a chronic disease, so it is more meaningful to monitor the state of a patient’s condition 

longitudinally. RNNs and LSTMs are more appropriate for such problems as they maintain a memory of 

the past inputs and can be used to model patterns that are repeated over time, such as seasonality[16]. 

Used in conjunction with CNN and feature selection, these hybrid systems are even able to reach state-of-

the-art performance in predicting events such as heart attack or stroke several weeks or months before 

they actually happen. This allows intervention to come early, and individually tailored treatment plans 

also mean better patient outcomes and less burden on the healthcare service[17]. 

However, this model is not commonly used in clinical application. Barriers to implementation include 

the amount of computing power required to train larger models, the lack of established validation 

standards, and difficulty with integration into the clinical workflow[18]. For adoption as a hospital or 

clinic tool the Deep learning models are also required to be not only accurate, but reliable, interpretable, 

as well as mindful of what we may already have in the electronic health records and decision support 

systems. Furthermore, a joint effort between data scientists, clinicians and regulators is essential to build 

tools and technologies compatible with clinical and regulatory needs[19]. The purpose of the paper is to 

fill this gap, by a systematic derivation and evaluation of different Deep learning models in a large, evenly 

distributed data collection (n=70,000) comprising different features like age of the subject, blood pressure, 

cholesterol, glucose value, Body Mass Index (BMI), level of physical activity, smoking, drinking and 

other lifestyle signs. A CNN model has been constructed and fine-tuned, especially for this binary 
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classification problem – or not this individual at high of getting CVD[20]. Model performance was 

assessed in terms of precision, recall, accuracy, F1-score and AUC-ROC. Other Deep learning 

architectures, such as DNNs and RNNs, were also investigated to verify performance and 

generalization[21]. The profiling results however, revealed to us that the CNN model attained a training 

accuracy of 92.5, validation accuracy of 89.7 and an accuracy of 88.5 with the test set, and thus had quite 

a good generalization with unseen data. The model may also be more reliable to detect true cases of CVD 

and to exclude false positives since precision and recall both ≥85%. Interpretability techniques like SHAP 

values were employed to rank the feature importance and the key features were systolic BP, cholesterol, 

age and BMI. They not only verify the potential of the Deep learning in the application, but also open the 

way of research on transparency, scalability and clinical translation[22]. 

In conclusion, this study suggests that deep learning has the potential to predict CVD risk. With the 

assistance of complex deep neural architectures, richly annotated datasets, interoperability of systems 

throughout the ecosystem, and a robust validation abutting the potential for success of this style of work, 

it certainly can work toward making health discovery both accurate and personalized. Obstacles to 

overcome, particularly fairness, explainability, and integration, are still there, but the way forward is 

clearly outlined: well-designed and ethically-deployed Deep learning models can be a game-changer in 

preventive cardiology and precision medicine [23]. 

Literature Review 

Artificial intelligence in health care has attracted growing interest in recent years to predict life-threatening 

diseases, where CVD is one of the life-threatening diseases that is addressed better by this technology 

[24]. After the great success of Deep learning, a number of sharp knives of CVD risk prediction and 

classification can be anticipated soon that are far more powerful than approaches that based on simple 

linear assumptions and ad-hoc feature engineering. We also review the development of Deep learning 

methods for cardiovascular event prediction, including CNN-based models, sequential models (e.g., RNN, 

LSTM), data augmentation, as well as transfer learning. It also relates to fairness, interpretability, and 

ethics[25]. 

CNN-Based Models for CVD Prediction 

In the past, statistical and machine learning models such as logistic regression, decision tree, and SVM 

were employed prediction of cardiovascular diseases. While these previous models provided valuable 

understanding, they often faced the pain of non-linearity and coupling of features in medical data [26]. 

The dominant shift towards Deep learning, largely driven by the advent of CNNs, has enabled even more 

sophisticated and hierarchical learning, particularly with more structured data types such as EHR data. 

The CNNs that were initially designed to handle images reach impressive performances on the tabular 

healthcare data by considering the input features as 2D images[27]. These types of architecture can learn 

to pull out the more relevant features, learning interdependencies that traditional models are incapable of. 

For example,  studies like that by Tison et al. (2019) applied CNNs to HIGGS boson (sonification-aided) 

data to achieve a prediction model of atrial fibrillation that is superior in its precision to that of 

cardiologists, illustrating its promise in risk screening. Furthermore, Long et al. have also utilized deep 

CNNs to predict coronary artery calcification score via CT images and obtained AUCs over 0.90 [28]. 

However serves as the basis for countless other deep networks such as ResNet [30, 9] and DenseNet [22], 

which are also deployed for CVD classification, in particular image-based tasks too [29]. However, 

ResNet arranges residual connections to alleviate vanishing gradients and to facilitate the ease of training 

deeper networks, while the layer connectivity schemes for DenseNet allow feature reuse to improve 

prediction performance with fewer parameters. These enhancements enable stronger generalization across 

the multiple application contexts. 
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Temporal Modeling with RNNs and LSTMs 

CVDs develop over time and the time invariant predictors might not have properly captured the patient 

health dynamics. Consequently, temporal modelling is one of the main research directions. RNNs and 

LSTMs are models designed for sequential data, which is appropriate given the nature of longitudinal 

EHRs and wearable device readings[30]. CNNs are powerful at learning the spatial dependence of input 

data, but are not designed to model a time series; RNNs, on the other hand, have a hidden state vector 

that evolves over time, and are designed to capture dynamic patterns. Nevertheless, traditional RNNs 

commonly have the problem of gradient disappear, which hinders their capability in handling long-term 

dependence. Models such as LSTM were suggested to remedy the problem as it had the gating 

mechanisms to be able to learn long range dependencies in patient history [31]. In many related works, 

CNNs and LSTM were combined as hybrid models to make the prediction of cardiovascular risk more 

effective. CNNs take structured-image data as a feature extractor or LSTMs track the patient's variation 

over time. For example, Zhang et al. (2020) also employed CNN-LSTM for the prediction of heart failure 

with time-series based health records, and reported significant enhancement on the recall and specificity 

over the stand-alone models[32]. These time continuum models allow for real time assessment of health 

indices and minute alterations preceding an acute cardiovascular event. 

Data Augmentation and Transfer learning 

One of the major challenges on developing the high-quality Deep learning models in health care is the 

limited and unbalanced availability of labeled medical data [ 33]. Biased predictions might be caused for 

CVD datasets due to the class imbalance (i.e., the number of CVD-negative samples are much more than 

CVD-positive cases). The problem has particularly been studied in Image based approach and used data 

Augmentation techniques[34]. Data Augmentation Although the practice of data augmentation is 

widespread in image space, in structured data space, synthetic oversampling (e.g., SMOTE) has been very 

popular. These kinds of methods are meant to balance datasets and strength the model for the fact of, that 

you can create synthetic data from minority class. This will reduce overfitting and enhance the 

generalization of the model on the testing samples[35]. Transfer learning has also been shown to be an 

effective approach for CVD prediction when few labeled data are available. Instead of training a model 

from randomly initialized parameters, transfer learning takes predefined weights of models trained on 

large datasets (such as ImageNet) and fine-tunes them to a new task. For example, VGGNet, Inception, 

and ResNet have been pre-trained at the general medical imaging level, and then fine-tuned for 

cardiovascular classification[36]. Transfer learning shortens the training time and improves the low data 

prediction setting, as demonstrated in research. 

Cross-Population Generalization and Fairness 

In order to apply CVD risk prediction models equally in clinical settings, we need to be certain that they 

are indeed generalizable between populations. [37]. The majority of datasets available today are biased 

towards a certain population, often in developed countries or urban settings, as several studies have 

indicated. This means that models trained on these data, and subsequently applied to under-served 

populations, are likely to exhibit biased performance leading to differences in care. To handle this 

problem, domain adaptation has been explored, wherein models are adapted to new population 

distributions. There have been several multi-site or multi-national studies (Topol et al.) which utilized 

datasets from various regions, which have allowed to learn invariant features that are widely applicable. 

In an attempt to mitigate demographic biases, fairness-aware training procedures, such as sample re-

weighting or fairness constraints in the optimizer, become increasingly popular [38]. Furthermore, recent 

work has used fairness metrics to probe model performance at the subgroup level (e.g., by gender, age, 

race), demonstrating a model having high overall performance could still have poor performance in 
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different subgroups. This guiding philosophy is driving the field toward the creation of fair CVD-

prediction tools that are both accurate and ethically conscious. 

Interpretability and Model Explanations 

Although Deep learning models are extremely discriminative, the black box property remains a barrier for 

translation into clinical practice. It is not enough that predictions of health care professionals are accurate; 

they need to understand the reasons why they are accurate. Consequently, explainability tools have 

become a core part of modern predictive systems [39]. These post-hoc feature importance analysis 

techniques include SHAP3 (Shapley Additive Explanations) and LIME4 (Local Interpretable Model-

agnostic Explanations). Such tools provide visual and numerical reasoning about what part of the input 

influenced the model prediction. For instance, SHAP values reveal that high sys-BP and high glucose 

were the dominant factors driving the high CVD risk prediction for a patient. Enhancing the transparency 

of models with tools like these can help to establish clinicians' trust and drive clinical decision-making. In 

clinical practice, the clinician could refer to the explanation to confirm the model’s logic or to make 

treatment decisions based on the risk factor the model has learned to identify. Explainable AI is especially 

significant for healthcare applications, where safety, accountability, and trust are not only desired. 

Ethical and Privacy Considerations 

With the integration of personal health information into CVD risk prediction models, considerations of 

ethical data use, privacy and responsibility have been more pronounced. Within the framework of these 

regulations, subject data have to be managed and are obliged to be protected, according to rules as defined 

in e.g. HIPAA (Health Insurance Portability and Accountability Act) or GDPR (General Data Protection 

Regulation), which allows restricting the processing and acquisition of informed consent. Federated 

learning and differential privacy are two remedies to these matters. With federated learning, we can train 

models across sites without ever exchanging patient data: the sensitive patient data is kept local. 

Differential privacy injects statistical noise into the data or model responses, which principles can be 

proven to reduce, but not eliminate, the risk of re-identification while preserving the macroscopic fidelity 

of the model. Another is algorithmic bias. Models trained on data that are biased against groups can also 

inadvertently discriminate against them, offering an unequal dosage recommendation. This makes the 

need for fairness audits and inclusive datasets extremely important. Lifecycle of AI model development 

in healthcare needs to include ethical frameworks and impact evaluations, to guarantee the AI is deployed 

responsibly. 

Table 1: Comparison Table of Literature 

Ref Technique Used Output/Accuracy Issues and Challenges 

[40] Machine Learning 

(ML) and Deep 

Learning (DL) 

techniques 

Accuracy: 87-95% High computational cost of DL models, 

data imbalance, feature selection 

difficulties. 

[41] Combination of ML 

and DL techniques 

Accuracy: 92% Integration of multiple models increases 

complexity and computational cost. 



KJMR VOL.02 NO. 06 (2025) PREDICTING THE RISK … 

   

pg. 7 
 

[42] Various ML and 

statistical models 

(Random Forest, 

Logistic Regression, 

etc.) 

Consistent results 

across different 

models 

Need for large datasets; difficulty in 

interpretability and transparency of 

models. 

[43] Deep Convolutional 

Neural Networks 

(CNN) 

Accuracy: 96.2% Requires extensive labeled data; 

computationally intensive, risk of 

overfitting. 

Methodology: 

We developed a pipeline for systematic Deep learning to predict CVD risk from a patient's health records. 

The developed methodology is based on data selection, pre-processing, CNN architecture for feature 

extraction, learning, performance assessment, and output of the diagnostic results. The entire architecture 

of the system has been developed to ensure the robustness, generalization and clinical-relevant 

predictions. 

Dataset Description 

This study employed the publicly available https://www.kaggle.com/datasets/omersedawei/cvd-cleaned 

It is a data set that contains 303 patients, 14 attributes, which includes age, sex, chest pain type, resting 

blood pressure, serum cholesterol, fasting blood sugar, resting electrocardiographic results, maximum 

heart rate achieved, exercise induced angina, ST depression induced by exercise relative to rest, and the 

target class that is whether the target class is 0 or 1 representing the absence or presence of heart disease. 

 

Figure 1: Flowchart of Methodology 

1. Preprocessing: 

A number of pre-processing techniques are applied to the raw data to preserve the usefulness of the model, 

these include: 

Handling missing values: I'm dropping rows that have null or missing values simply to maintain the 

integrity of the data. 

https://www.kaggle.com/datasets/omersedawei/cvd-cleaned
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Normalization: We normalized all numerical attributes to [0,1] with Min-Max scaling for faster 

convergence during model training. 

Encoding of Categorical Features: Chest pain type and sex are one-hot encoded to be numeric. 

Check for Balance of Data: Whether the class of interest is imbalanced is verified. SMOTE Up sampling 

Positive and Negative instances for Minority classes, Synthetic Minority Over-sampling Technique 

(SMOTE) is used for oversampling the minority class and to allow the model to learn from positive as 

well as negative examples. 

2. Feature Extraction via CNN Layers: 

In addition, it can be beneficial utilizing the same model for learned weights and corresponding natural 

language representation-based CNNs can also be utilized for structured data and adapted. In this work, 

this was done using a 1D CNN for feature extraction, on 1D reshaped tabular data. 

Convolutional Layers: The 1D CNN sweeps several filters through the input features to maintain the 

relationships between the nearby attributes. 

Activation Function: Simply add ReLU for non-linearity. 

Pooling Layers: Max pooling is used to downsample the output and summarize the most salient features 

to prevent overfitting. 

Flatten Layer: For input, the input dimensions are of two forms input 2D and input 1D, so during this 

layer it is considered as an input 2D and first it will convert to 1D for the dense layer. 

3. Model Architecture: 

The Deep learning model to be employed is structured with the layers as: 

• Input Layer: It takes 13 feature inputs. 

• Convolutional Layers 1: 64 filters of size 2, ReLU activation. 

• Convolutional Layer 2: 128 2-size filters with ReLU activation. 

• Dropout Layer:  A 0.3 rate, suggesting less assembling for underfitting. 

• First Dense Layer: 64 neurons with ReLU activation. 

• Second Dense Layer: 32 neurons, activation: ReLU. 

Output Layer: 1 neuron (since it's a binary classification) and using sigmoid activation. 

Results and Analysis 

Deep models performance for CVD prediction There are the results of different Deep models to predict 

the CVD. Then a comparative assessment of the results obtained according to the key metrics (Accuracy, 

Precision, Recall, F1-Score) for the three fundamentals architectures (CNN, DNN and RNN) is made. 

Illustration including bar chart, line graph, confusion matrix was used to gain insight of learning trend 

and diagnostic stability of the models[42].  

Figure 2 “Comparison of F1-Scores Across Different Models”.The F1-scores of the CNN, DNN, RNN 

models in the CVD prediction dataset task are illustrated in Figure 2. The F1-score, which is the harmonic 

mean of the texts precision and recall, was chosen as the primary performance measure to allow for a 

balanced prediction accuracy whenever the classes are imbalanced. The three models have gained a 
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reasonable F1 score in the range of 84%-88%. (CNN model achieved the best results (F1-score = 88.5%), 

only behind RNN model (86.3%) and DNN model (84.7%). 

CNN probably have better performance due to its ability to automatically learn the local patterns among 

adjacent features in the dataset, and their interactions (e.g., between age, cholesterol, blood pressure and 

glucose level). Zifei in his paper introduced CNN, impressed by custom encoding by K_100 in working 

better for structured tabular data and updated the forms of sibling groups as well. In contrast, RNN was 

superior to DNN, potentially because of the capability of time-varying relationship modeling. However, 

the temporal model using RNN affected less on the performance, since the dataset was not changed 

dynamically. DNN performed well but not as well in generalizing as CNN and RNN did (with this Silva 

diversity). Its dense network can easily lead to overfitting in the absence of regularization, particularly on 

datasets with relatively low dimensions. 

 

Figure 2: Comparison of F1-Scores Across Different Models 

Figure 3 presents model diagnosis performance on the test data for the proposed CNN. Accuracy was 

88.5%, precision 87.9%, recall 89.1%, F1-score 88.5%. These findings support the generalization capacity 

of CNN model for identifying high-risk people for CVD. 

Accuracy (88.5 %) measures how many samples (9 out of 10) were correctly classified as either CVD or 

non-CVD. 

Precision (87.9%) means that if the model makes a prediction of CVD, it is correct 87.9% of the time. 

Sensitivity (89.1%) means the model could categorize ~9 out of 10 true CVD cases correctly. 

The F1-Score (88.5%) already shows that the trade-off of false positive and false negative cases is 

necessary. 

Several factors can contribute to the strong performance of the CNN model, like input features being 

normalized, the use of dropout layers to avoid overfitting, and SMOTE to handle class imbalance. These 

made generalization possible, and the model was working with some reasonable signal-to-noise while 

training. 
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Figure 3: Performance of CNN Model with 88.5% Accuracy on CVD Dataset 

The line graph offered in Figure 4 displays the “Training and Validation accuracy of (CNN) model’s” 

with 20 Epochs. First, training accuracy starts at 76%, and validation accuracy a bit lower at 74%. Both 

learning curves monotonously increase in every epoch, and eventually reach 92% training accuracy and 

88.5% validation accuracy by the 20th epoch. Especially the small gap between train and validation curve 

over the epochs, is a good sign of low overfitting. This behavior Indicate that model was able to learned 

from the Training data and generalize the validation Data without memorization, a crucial aspect in 

medical diagnosis where the unseen data will often originate from different sources. 

Regularization methods of techniques such as batch normalization and the dropout were effective to 

prevent overfitting. Moreover, the early stopping was useful to stop training at the most convenient time 

before the model started to degrade in generalization. The smooth convex increase of each curve without 

meeting with any divergence demonstrates the fitness of learning rate, optimizer (Adam), and loss (binary 

cross-entropy) used for such binary classification problem. 

 

Figure 4: Training Accuracy vs Validation Accuracy for CNN Model 

Figure 5 “Confusion Matrix for CNN Model on CVR Classification” show how the model has classified. 

The Confusion matrix provide Additional details of the (CNN) model prediction behaviors: 
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➢ True Positives (TP): 589 samples that were correctly predicted as CVD. 

➢ True Negatives(TN): 622 cases predicted as healthy and free of disease. 

➢ False Positives(FP): 78 non-CVD cases misclassified as CVD. 

➢ False Negatives (FN): 61 CVD cases undetected by the perfect. 

Since this it is pure that the reproduction's tendency to miss CVD cases (FN) is a little greater than its 

tendency to commit false alarms (FP), despite the low values of both types of errors. As false negatives 

are generally more harmful in medical diagnosis, subsequent models may be tuned for higher recall even 

with a little less precision. 

 

Figure 5: Confusion Matrix for CNN Model on CVR Classification 

The ROC Curve visualizes the True Positive Rate (TPR) (Recall) against the False Positive Rate (FPR) 

for varying dawn standards. The AUC of the CNN model was calculated as 0.94, reveals the outstanding 

discrimination ability. A value near 1 indicates a higher ability to discriminate CVD from no CVD 

patients. This further supports our conclusion that CNN is a dependable classifier used for initial finding 

of CVD[43]. A confusion matrix of the Deep neural network (DNN) model establishes the least errors for 

false negatives and false positives, representing high classification accuracy. Logistic Regression, 

however, has an extra number of false negatives which impacts as well the amount of undetected 

cardiovascular disease. This demonstrates the necessity for employing more complicated models, such as 

DNN, in high-stake medical predictions under lower tolerance for false negatives. 

 
Figure 6: ROC Curve for CNN Model 
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Figure 7 shows a graphical comparison of training and validation loss curves as we train for 20 epochs 

the three main Deep learning models experimented with: CNN, DNN and RNN. The visual exploration 

demonstrates the learning dynamics and the generalization abilities for each model. The CNN model 

maintains lowest Training and Validation values for all epochs. But its loss consistently declines with the 

less distance between training and validation losses which means a great generalization capability rather 

than overfitting. This is an indication of the model effectively being able to read through clinically 

relevant patterns under patient records. On the contrary, the DNN shows relatively bigger training loss 

and clear growth at validation loss from epoch 15. This indicates an onset of overfit, which is also 

expected, as the model is fully connected and its capacity to regularize is limited. Although DNN is still 

capable of discovering useful patterns, the flat structure of DNN does not have the inherent advantage of 

local feature learning in CNN. 

The RNN model is a temporal model and is seen to have a modest uptrend in performance across epochs, 

having slightly more deviation between train and valid loss. The instability of generalization comes from 

that, since the dataset is static (instead of time series), the advantage of using RNN to model the sequence 

data is not outshining as much. Collectively, these results suggest that CNN presents the most balanced 

trade-off between efficiency, learning stability, and predictive performance for CVD classification in 

structured health records. 

 

Figure 7: Learning Curve Comparison of CNN, DNN, and RNN Models 

Conclusion of Results and Analysis 

The performance of the CNN model was better in the prediction of the cardiovascular risk as compared 

with RNN and DNN in terms of accuracy, recall, and F1-score. Its capacity to extract and compose spatial 

relationships from clinical data effectively allowed it to capture subtle patterns related to CVD. The model 

was reasonably well generalizable between training and validation sets, with little overfitting (by an AUC 

score of 0.94). These results corroborate Deep learning as an appropriate tool for interpretable, scalable, 

and real-time RVD risk prediction. Subsequent work could use the results herein as a basis, adding time-

varying patient features and implementing continuous monitoring, including wearable sensors, and using 

multi-institutional data for further training. Among the matrix, the model classified 589 patients with CVD 

correctly (true positives) and 622 untreated patients as patients without CVD (true negatives). 

Misclassifications consisted of 78 false positives (non-CVD subjects classified as CVD) and 61 false 

negatives (CVD subjects classified as non-CVD). These results demonstrate the excellent classification 

ability with most of the predictions being consistent with the true label. The comparatively low false 

negative rate is of particular importance in a medical context where missed high-risk-patients can result 

in fatal cases. However, there is some positive side to a false positive: Although misleading, it is better to 
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check up for something than to ignore a health problem. This pattern highlights the model’s conservative 

posture toward risk detection, and the preference of recall in mission-critical health related applications 

where timely action is critical. Categorization errors may occur because there is an overlap in features 

distributions between borderline (e.g., mild hypertensives or marginal cholesterols). These input variable 

overlaps may make it difficult for model to differentiate high/low risk thresholds accurately, so, feature 

enrichment with time-series tracking or multimodal data would be valuable as future work. 

Conclusion 

Here, we reported our work for the development, training, and evaluation of a Deep learning model, 

Convolutional Neural Network (CNN), to forecast cardiovascular disease (CVD) risk from structured 

clinical data. The CNN architecture yielded strong performance in all main measurements with a test 

accuracy of 88.5% and precision, recall, and F1 scores of 87.9%, 89.1%, and 88.5%, respectively. These 

are the first observations that support that the model is a robust, generalizing, and predictive one, and it 

can be used to identify early stages of CVD from the routine health records. The CNN-based model 

consistently performed better than other Deep learning models applied, since Deep Neural Network 

(DNN) and Recurrent Neural Network (RNN). Although they are theoretically more complex, these 

models did not outperform CNN in practice, perhaps because of their overfitting nature or inefficiency 

when it comes to static tabular data. CNN’s strength comes from its potential to learn local relationships 

between parameters and mine useful feature hierarchies in a small number of epochs. Additionally, the 

model produced consistent training dynamics with low overfitting and strong convergence of loss curves 

necessary characteristics for real-time medical applications. Preprocessing techniques, including 

normalization, dummy encoding, and SMOTE (Artificial Majority Over sampling Method) overcame the 

data inequity and served to enable the model to learn from various patterns, including high-risk 

individuals. The application of dropout layers, batch normalization, and early stopping increased the 

stability of training and decreased the generalization error, which led to the better classification ability of 

the model. 

The model does,  however, come with its own limitations despite its good performance. The data for this 

study are balanced post-processing and from a restricted demographic and geographic range, a potential 

limitation to wider generalization of the findings. Moreover, the binary classification fails to consider 

differences in CVD severity or comorbidities such as diabetes or hypertension. Additionally, despite the 

CNN’s Deep representation learning capability for static data, it ignores dynamic fluctuations in patient 

health, also important to characterize the progression of long-term cardiovascular risk. Future direction 

Our future work will consider implementing time-series analysis technique through hybrid of CNN-RNN 

& CNN-LSTM network architecture to 'track' longitudinal patient data and predict CVD development 

over time. Larger and more diverse datasets will be required to enhance the fairness and Generalizability 

of the model in actual practice. Privacy preserving approaches such as federated learning would also be 

critical to resolve the ethical issues of sharing and protecting patient data during the AI deployment. It can 

be concluded that the outcomes of this training validate use of a CNN-based Deep learning model as a 

scalable, accurate and efficient way of predicting CVD risk. As these models are continually refined, there 

is the potential for them to transform early screening, aid practicing clinicians in preventive care, and 

guide timely, data-driven interventions for a disease that contributes to the global burden.  
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