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Abstract 
This article addresses the problem of model-based early design verification of 

systems engineering applications expressed using System Modelling Language 

(SysML). This thesis describes the formal specification and verification approach 

for the early design verification of real time embedded systems. The main 

objective is to assess the design from its functional requirements to ensure the 

conformance of system requirements at early design phase. My main contribution 

is a novel approach to model and verify the hybrid systems using SysML Block 

Diagram and hybrid automata. A formal verification technique “Model checking” 

has been used for the formal verification of SysML Block Diagram of real time 

embedded systems. The PRISM models Probabilistic Timed Automata (PTA) 

and Continuous Time Markov Chain (CTMC) are taken for the formalization and 

mapping of SysML Block Diagram. The user requirements are expressed as 

temporal logics Probabilistic Computational Tree Logic (PCTL) and Continuous 

Stochastic Logic (CSL) for the properties verification against the PTA and 

CTMC model. Moreover, it define hybrid automata based formal specification to 

extend the behavior of SysML Block Diagram. The upgraded SysML Block 

Diagram has more ability to capture the discrete and continuous behavior of 

hybrid systems accurately. The SysML block diagram is verified with PRISM in 

order to show the correctness of system functionality. This thesis presents the 

effectiveness and validity of proposed approach with the help of four case studies. 

The discrete and continuous time constraints are considered in case studies along 

with the system functionality. The discrete and continuous time constraint helps 

the system and software engineer to verify the real time aspect of system along 

with its system functionality. 

  Keywords: 

SysML (System Modeling Language) , Distributed Environment, Temporal 

Logic , Continuous Stochastic Logic (CSL)  , Probabilistic Computational 

Tree Logic (PCTL), Extended Computation Tree logic (ECTL) , Unified 

Modeling Language (UML) 
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Introduction 

This research project consists of three parts. . 

Embedded systems are very large and complex, and such systems need to be checked and verified to 

reduce risk during the development phase. Graphic modeling of such real-time systems requires greater 

accuracy and reliability. Products, features. Use mathematical thinking to check the accuracy of your 

software. In other words, in reviews, i.e. H. software testing, this process is used to recognize errors. Can 

be used to verify consistency of technical methods during design. This can lead to financial issues, product 

failures, human errors, and other issues, leading to dangerous consequences. Important times are related 

to actual times and are important when the system is unable to work on time. Such current technologies 

must be identified and implemented at the initial design stage to prevent risks that may arise at later stages. 

The cost of correcting errors after the development process is approximately 500 more than the cost of 

correcting errors during the initial design phase. Graphic modeling and early reviews of graphic models 

are necessary to reduce the risks that may occur at later stages of development. Design, specifications and 

analysis of real-time am-bed systems is a challenging task for software and systems engineers. Therefore, 

these issues need to be identified and verified at the early stages of system design. The purpose of this 

paper is to model real-time diagrams and perform validation using SYSML block diagrams to verify the 

accuracy of the system according to the requirements. Recognizing the graphics models of these systems 

is difficult due to time addiction. The SYSML block diagram represents all the components and explains 

the interactions between them. These graphic patterns should be recorded during the early construction 

stage. Otherwise, it could lead to product failures and loss of sales. It helps you make more accurate and 

accurate decisions about your users. The main purpose of this paper is to demonstrate the properties and 

analysis of SYSML block diagrams with the help of real-time visualization. The goal is to prove the 

accuracy of system operations in both discrete and continuous time. The review process [3] includes model 

testing, interrupt analysis, white box testing, black box testing, and more. We chose this as one of the 

corresponding verification methods for the system for the system. inspection. A clear code is provided to 

explain the rights of users of the system. This specification includes formal processes and written models 

for real modeling and machine learning. Specific guidelines provide guidelines for developing reliable 

and correct applications. 

2. Materials and Methods 

For graphic modeling of embedded systems in real time, SYSML was chosen as the graphic modeling 

language for modeling such systems. Although SYSML offers a variety of diagrams, it takes over the 

SYSML block diagram for graphic modeling of embedded systems, as it provides clearer and faster system 

functionality. Internal block diagram programs provide an internal view of a system block or white box 

view, as they are instantiated from a block definition diagram that represents only the main system block. 

Compound blocks are displayed as block portions of the internal block diagram and provide a view of the 

internal system components. The internal structure of system components is easy to inspect in internal 

block diagrams and therefore provides the basis for checking the functionality of internal and external 

components. 

Presenting formal specifications using hybrid machines, overcome the limitations of SYSML models and 

improved SYSML, and formal specifications I created a block diagram from The updated SYSML block 

diagram is used to model hybrid system components. To confirm system modifications, model testing 

technology was selected as one of the formal verification techniques for checking the graphic models of 

actual time packaging systems. A methodology for automatic review of SYSML models of embedded 

systems in real time has been proposed. The SYSML block diagram is commented on the flow port to 

display the interactions between different blocks. The SYSML model is translated into the PRISM model 

(PTA and CTMC), and the user requirements are translated into time logic (PCTL and CSL). The examiner 

of the PRISM model occupies both the PRISM model and the property, showing results indicating that 

the property is true or incorrect. The PRISM model tester shows counters where properties are not true 
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and helps to modify the SYSML model. Figure 3.1 illustrates the proposed approach to explain how a 

graphic model of a system embedded in real time is validated using the model testing tool PRISM. 

Figure 3.1 Proposed Methodology 

3. PRISM 

3.1 Why PRISM 

There are different model testing tools to verify graphic models. Uppal is a model testing tool to verify 

real systems that can verify only single time-based requirements. Divine is a parallel model tester that 

does not support time-controlled machines and is not applied for time-controlling. Prism is a parallel 

model tester that supports both single and continuous time real-time systems. You can use prisms to view 

both time control and unlimited requirements. I used the PRISM model tester and tested the functionality 

of the system through the SYSML-NERTERNAL block diagram and the enhanced SYSML block 

diagram. Prisma is a concurrent model for model testing and allows parallel review of components. Thus, 

PRISM model checkers are appropriate for case studies of real-time embedded systems since they can 

verify models within less time compared to other model auditors. In addition, prisms are also appropriate 

for verifying stochastic time coefficients. It can also give counters if the properties of the model are not 

satisfied. This assists you in identifying the absence of models. 

3.2 Comparison between PRISM and other Model Checkers 

The model checking tool Prisma has many features when compared to other model review tools. The 

PRISM model tester supports four types of models. Markov Chain (CTMC), Stochastic Machine (PA), 

Stochastic Time-Control Automatic (PTA), Markov Decision Process (MDP). Discrete-Time Markov 

Chains (DTMCS) are models based on discrete-time transition systems and are probability distributions 

that are used randomly for synchronization. The Continuous Time Markov Chain (DTMC) is designed to 

support models with infinite small time steps continuous periods. Markov Decision Process (MDP) is an 

extension of the DTMC model that supports non-deterministic features and is suitable for parallel 

processes. Stochastic Automata (PAS) is a model that supports time-controlled machines, while Stochastic 

Automatic (PTA) is the best model for determining the probability of a state without supporting time-

controlled machines. PRISMA supports a wide range of property specifications, such as PCTL, CSL, LTL, 

PLTL, PCTL*, and more, compared to other model auditors. Features such as deadlock recognition, 

counterexamples, witnesses, diagrams, and graphic user interfaces (GUIs). PRISM uses reviews in a 

variety of application domains, including distributed algorithms, communications, multimedia protocols, 

security protocols, and biological systems. In recent years, PRISM has been used to check UML/SYSML-

based models, and using this model testing tool, only UML/SYSML models such as activity diagrams and 
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state diagrams have been validated. We chose Prism as a model checking tool for wide support for 

features. A comparison between the characteristics of different model testers is shown in Table 3.1. 

3.2 Comparison between PRISM and other Model Checkers 

Table 3.1 Model Checking Tools-Comparison Chart 
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Table 3.2 (cont'd) 
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Charon Hybr
id 

Charo
n 

MEDL Disc
rete 

Contin
uous 

Yes Y
e
s 

January 
23, 

Embedded No 

 syste
m 

Langu
age 

     2003 systems  

           

KRONOS Real-
time 

Krono
s 

TCTL Disc
rete 

No No N
o 

Sep 5, 
2002 

Embedded State 
machine 

  Langu
age 

      systems diagram 

           

d/dt hybr
id 

d/dt CTL Disc
rete 

Contin
uous 

No N
o 

 reachabilit
y 

No 

 syste
ms 

Langu
age 

      analysis  

           

NuSMV Plain SMV CTL, LTL No No No N
o 

Version 
2.5.4, 

synchrono
us 

Sequence 

        October 
28, 

finite-state 
and 

diagram, 

        2011 infinite-
state 

 

         systems  
Cadence Plain Caden

ce 
CTL, LTL No No No N

o 
version 
2.5, 

computer functiona
l block 

SMV  SMV,      July 30, 
1998 

hardware 
designs 

diagram 

  Verilo
g 

        

PAT Prob
abili
st 

CSP LTL Yes No Yes Y
e
s 

Version 
3.5.1, 

real-time 
system 

state 
machine 

 ic, 
Plain
, 

      August 
13, 

 diagram 

 Real-
time 

      2013   

SPIN Plain Prome
la 

LTL No No Yes Y
e
s 

Version 
6, 

Multi-
threaded 

No 

        Decemb
er, 

software  

        2010 application
s 

 

TAPAAL Real 
Time 

Petri 
nets 

TCTL Yes Yes No Y
e
s 

Version Petri nets, No 

        3.1.3, 
Dec 2, 

Timed-Arc  



KJMR VOL.02 NO. 03 (2025) A SYSTEMATIC APPROACH TO … 

   

pg. 171 
 

        2014   

4. Preliminaries 

Functional block diagram is a block diagram that shows the relationship between systems and functions 

in software engineering. A block diagram is a representation of an obstructing system function, and 

indicates that it is linked to other blocks and displays their relationship. figure. In SYSML, a block is 

viewed as a fundamental unit that represents the structure of a system. Blocks may represent software and 

hardware components. SYSML employs a block definition diagram to define blocks from a functional 

view and indicate the structural relationships of blocks. The internal block diagram is analogous to the 

traditional block diagram and describes the internal structure of the block. The internal block diagram [16] 

is derived from the UML composite structure diagram [15] with some extensions and rules that are 

specified by SYSML. The internal block diagram consists of parts, ports, and connections that illustrate 

the activity of the block's internal structure. The building blocks from the block definition diagram are 

part of the internal block diagram. A connection is utilized to connect two blocks, and the parts are linked 

using a connection and communicated using a port. Two types of ports in the block exist. Standard port 

and river connection. Communication between blocks is done with the assistance of ports. A block 

contains two ports, that is, H. Standard Port and Fluid Sport, which is utilized for transferring data from a 

block to another. A flow port is a point of communication through which help or output of elements like 

energy and data move [16]. There is River Sports for data transfer between blocks. There are two kinds of 

flow connections: H. Nuclear Fluss Sport and Non -Tatomar River Sports. Atomic flow ports are 

categorized after the blocks of communication elements and non-a commercial flow ports, by flow 

specifications for element communication. Nuclear flow ports were utilized for communication among 

blocks. Standard ports call surfaces for communication and operation between blocks through interfaces. 

4.1Timed Automata 

A timed automata (TA) models the real-time behavior of embedded systems. We employ timed automata 

which relate the functionality of internal system components of internal block diagram and real-time 

attributes of embedded system. Timed automata [43] represents a finite set of real value clocks that can 

grow with time and which can be reset. 

Timed automata [43] is a tuple TA = (L, Li, E, C, clock, guard, inv, lab) where, 

• L is a finite set of location 

• Li∈L is an initial location 

• E is a set of edges 

• C is a finite set of clocks 

• Clock: a function assigned to each edge 

• Guard: a function labels each edge with a clock constraint 

• Inv: function is assigned to each location an invariant 

• lab: L→2AP is a labeling function assign to each location, a set of atomic proposition 

4.2 Continuous Time Markov Chain 

Continuous time Markov chain is used for the modeling of real time systems that have small time steps 

and it is used for the performance evaluation, reliability and dependability analysis. 

A continuous-time Markov chain [44] is a tuple C = (S, AP, L, α, P, E) where, 

• S is a finite set of states 

• AP is a finite set of atomic propositions 

• L : S → 2 AP is the labeling function 

• α ∈ Distr (S) is the initial distribution 

• P : S × S → [0, 1] is a stochastic matrix 

• E : S → R≥0 is the exit rate function  
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4.3 Hybrid Automata 

Hybrid automation is a finite state machine with discrete jump transition and continuous variables. 

Discrete action is an event whose value change at different point of time while transition to a finite set of 

control location. The continuous behavior shows the continuous variables whose value change with the 

passing of time within state. Hybrid automation is ideal for those systems that are composed of both 

discrete and continuous behavior. 

A hybrid automaton [45] is a tuple HA = (L, ∑, lab edge, X, Init, Invariant, Flow, Jump_func) where, 

• L represents the finite set of control location and it shows the control mode 

• ∑ represents the finite set of event names 

• lab edge is a finite set of labeled edges and it represents the discrete changes of control mode. The 

changes are labeled with event names taken 

• from label ∑ 

• X represent the finite set of real valued variable 

• Init is a predicate that indicates the value start from initial location 

• Invariant is a predicate that sets the value constraint for location 

• Flow is a flow predicate, which represents the continuous evolution when control of hybrid system is 

in location l 

• Jump_func is a function assigned to each edge a predicate that provide discrete events when move 

from one location to another 

4.4 Probabilistic Computational Tree Logic 

For the incorporation of user requirements as properties, PRISM supports two specification languages 

PCTL and CSL for property specification. To verify a Probabilistic timed automata, we write 

properties in PCTL to express its related specifications. PCTL is an extension of CTL with probabilistic 

operator [23]. The „P‟ operator in PCTL [46] has a probability bound (p∈ [0, 1]) and a relational operator 

(∼∈{<, ≤, ≥, >}). 

PRISM verifies probabilistic properties with temporal logic PCTL and CSL but it can also provide 

supports for verifying non-probabilistic properties by using operators from computation tree logic (CTL). 

CTL uses the A and E operators instead of the probabilistic operator „P‟ to show whether all paths or 

some path satisfy a particular path formula. 

4.5 Continuous Stochastic Logic 

Continuous Stochastic Logic (CSL) called branching time logic and it is similar to temporal logic 

Computation Tree Logic (CTL). PCTL operators have been adopted by CSL [47] and PCTL has operators 

like probability bound (p∈ [0, 1]) and a relational operator (∼∈ {<, ≤, ≥, >}). For the incorporation of user 

requirements to model checker property specification language, PRISM supports two property 

specification languages i.e. Probabilistic Computation Tree Logic (PCTL) and Continuous Stochastic 

Logic (CSL). PCTL is used for the MDP, DTMC models and CSL is used with CTMC model. 

5. Implementation and Experimental Results: 

In this section, a case study of Ticket Vending machine is given and then applied that shows the 

correctness of proposed approach in discrete time constraint. First, a case study is given and Internal Block 

diagram is employed for graphical modeling of case study. The graphical model is translated into the input 

language of PRISM model checker. Last, the user needs are given, converted to temporal logic PCTL and 

subsequently proved against the PRISM model. In the last, experimental outcomes are also included of 

this case study. 

It's an example of ticket vending machine. The ticket vending machine contains following components; 

magnetic strip card reader, keypad, display panel, controller, and ticket generator. When the user inserts 

the card in the magnetic strip card reader, then the 
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In Figure 5.1, the data is flowing among the blocks through flow ports and it shows the direction of data 

in two ways, either in one direction (←) (→) or in both directions (↔). The left arrow represents that the 

data is incoming while the right arrow describes that the data is out-going. In Figure 5.1, the block 

magnetic strip card reader receives input from the user who interacts with the card reader block through 

<<flow port>> in: card inserted and then send this data through <<flow port>> out: read data to controller 

block. The dotted arrow as shown in Figure 5.1 shows the transition of state among blocks. The block is 

receiving data through <<flow ports>> if the arrow head is towards the block and the block is sending 

data if the arrow tail is towards the block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Internal Block Diagram- Ticket Vending Machine 

5.2.1  Mapping of Internal Block Diagram with PRISM Notations for Verification of Model 

The SYSML model of ticket sales machine has been checked against a model checker prism. The 

following is an explanation of SYSML internal block diagrams allocation in the stochastic time controller 

model in Prisma. The PRISM model tester relies on a module where every module is a system component 

[46]. The module has variables to show the state transition when all actions are invoked. The command 

begins with a square bracket[] and the guard (condition), and, if the action is indicated, depict interactions 

between various modules. Module. Magnetic strip card reader, keyboard, controller, display panel, ticket 

generator. PRISM model mapping - SSML - The fragment code for the INTERNAL block diagram is 

given in Figure 5.2. 

Figure 5.2 Fragment code of PRISM- Ticket Vending Machine 
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For instance, if a system is in State S; then its transition is represented by the symbol S'. The transition 

between states in the case study is shown as “[ ] card reader = 0 

→ (card reader' = 1) & (x'=0);”. In above guard (condition), 0 represents “ready” state and 1 represents 

“card inserted” state. The card_ reader is a variable that changes its state from “ready” to “card inserted 

“and “x” represents the clock that reset to zero. The data type “clock” is defined as “x: clock;” where “x” 

is a variable represents a clock. 

In PRISM, the blocks interact with each other using synchronizing mode. In figure 5.2, The label “[eject 

attempt]” between modules “magnetic strip card reader” and “controller” indicates the synchronization 

between both modules and a transition arrow label shows it with Eject card: attempt>3 as shown in Figure 

5.1. The synchronization shows that the module “controller‟ interacts with module “magnetic strip card 

reader” to eject card if the number of attempts to insert pin code is greater than 3. 

In figure 5.2, the label [eject_timeunit_pin] between modules “magnetic strip card reader” and “controller” 

indicates that the “controller” module will eject the card, if the user does not enter the pin code within five 

units of time. The label [eject_timeunit_amount] between modules “magnetic strip card reader” and 

“controller” indicates that the “controller” module will eject the card; if the amount is not entered within 

five units of time 

5.2.2  Properties 

We have identified the properties that are checked against the translated model to establish internal block 

diagram of ticket vending machine correctness. We employed PCTL as temporal logic and checked the 

properties. PRISM employed CTL operators like A and E to satisfy a specific path formula. The operator 

"A" means that the property will always be true for all paths and operator "E" means that the property will 

eventually be true for all paths. We apply "E" operator with properties that fulfill a specific path formula. 

The "E" operator means that there should be a minimum of one path exists that leads to the desired state 

and only those paths will lead to the desired state that fulfill the given condition. The "F" operator is a 

special instance of Until "U" operator and it means that the property is true only when it fulfills the given 

condition. The temporal operator "F" holds true at some point on the path. The properties are given in 

Table 5.1 and its PCTL code is mentioned in Table 5.2.  

5.2.3  Experimental Results and Analysis 

In sections 5.2, 5.2.1 and 5.2.2, we conduct the experiment with case study and describe the mapping of 

internal block diagram to PRISM. We employ PRISM to illustrate the correctness of our proposed 

methodology. We check functional requirements given in Table 5.1 that establishes the correctness of 

ticket vending machine. For checking, the five properties are converted to PCTL format and then checked 

with PRISM. Table 5.2 demonstrates the PCTL formula of five properties and Figure 5.3 demonstrates 

experimental results in PRISM. 

Table 5.1 Properties-Ticket Vending Machine 

Property      

 Description     

No.      

  

 Magnetic strip card reader may take maximum 5 units of time 

P1      

 to read the card information     

   

P2 Validation of pin may not take more than 5 units of time  

  

P3 Validation of amount may not take more than 5 units of time 
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 Magnetic strip card reader should eject the car

d 

i

f 

i

t 

takes 

P4      

 more than 5 units of time to insert pin code     

      

 Magnetic strip card reader should eject the car

d 

i

f 

i

t 

takes 

P5      

 more than 5 units of time to insert amount     

      

      

Table 5.2 Properties Verified on PRISM-Ticket Vending Machine 

Property   

 PCTL properties Status 

No.   

   

P1 E [F card reader=2&x<=5] Satisfied 

   

P2 E [F controller=3&y<=5] Satisfied 

   

P3 E [F controller=6&y<=5] Satisfied 

   

P4 E [F (controller=1&y>=6) & card reader=3] Satisfied 

   

P5 E [F (controller&=4y>=6) &card reader=3] Satisfied 

   

The five properties in Table 5.1 are classified as timed properties and considering the discrete time aspect. 

Table 5.2 shows PCTL code for five properties that are verified with PRISM and it shows the status of 

properties as well. All properties are satisfied as shown in Table 5.2. The PRISM tool allows us to verify 

discrete time based properties. 

The properties mentioned in Table 5.1 are the functional requirements that reflect the normal behavior of 

ticket vending machine. The non-functional requirements such as performance, reliability and efficiency 

are also met along with functional requirements with the assistance of discrete time constraint. The card 

reader reads the card information within five units of time that reflects the performance and effectiveness 

of the system. The correctness of the system depends on the aspect that the system will not exceed five 

time units in reading the card's information. And system effectiveness proves that the system will carry 

out its task as described in user requirements. 

The case study given and proven is one of real-time embedded systems. The proposed method assists in 

the verification of the real-time embedded systems. The method can display correct results if we 

implement it to the real-time embedded systems. We took time factor into consideration in our case study 

and proved the system correctness together with discrete time constraint at an early design phase. The 

time constraint is a very important aspect in real-time embedded systems and therefore it is required for 

system engineer to verify, either the real-time embedded systems would finish the system functions within 
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the given time or not. The approach gives the system engineer a means to verify the system correctness as 

well as a discrete time limit at early design stage so that redesigning the entire system in the future is not 

costly. 

The methodology provides the correct and reliable results. It facilitates the system engineer to model and 

verify the real-time embedded system in less time as the internal block diagram helps to represent the 

system features clearly and quickly. The internal block diagram was not used as a design model in the past 

for the verification of early design of real-time systems. We involve the discrete time constraint in internal 

block diagram for the timed based modeling of case study and then verified the timed based properties 

that show the correctness and effectiveness of the system. PRISM also generates a counter example which 

shows the path of the state where condition is not true. 

The counter example is more useful to find errors in the early design phase and encourages us to improve 

the SysML model that ultimately saves the time, cost and efforts of system engineer that can take place 

later during the development of real-time embedded system. 

Figure 5.3 Automatic Verification of Properties in PRISM- Ticket Vending Machine 

5.3 Continuous Time Case Study and its Graphical Modeling 

In this section, a case study of Liquid fertilizer mixing plant is described and then implemented that proves 

the validity of proposed approach in continuous time constraint. First, a case study is described and 

Internal Block diagram is employed for graphical modeling of case study. The graphical model is 

translated into the input language of PRISM model checker. Lastly, the user requirements are given, 

converted to temporal logic CSL and then model-checked against the PRISM model. In the latter, the 

experimental findings are also mentioned of this case study. 

The plant of liquid fertilizer mixing consists of three sensors, four regulators, a mixing unit and a boiling 

unit. There are three containers with different liquids and each container has a regulator to control the flow 

of liquid from the container. Liquid flows to mixing unit from first, second and finally from third container. 

All regulators switch-on and switch-off one by one. Three sensors are attached in order to sense the level 

of the liquid. The sensor one, in turn, switches-on regulator one until the liquid from container one reaches 

a desired level. The sensor two then lets regulator two switch-on until the liquid from container two reach 

a specific level. Finally, sensor three enables regulator three to switch-on until the liquid in container three 

reach a desired level. 

Any regulator does not turn-on if any other regulator is turned-on. Then, mixing unit blends all liquids for 

up to 70.5 units of time but at least 50.5 units of time. Then, the regulator four turns-on to pump liquid 

from mixing unit to boiling unit. Lastly, boiling unit boils liquid for up to 110.5 units of time but at least 

80.5 units of time.  
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Figure 5.4 Internal Block Diagram-Liquid Fertilizer Mixing Plant 

We represent the liquid fertilizer case study with internal block diagram of SysML as depicted in Figure 

5.4 which gives six blocks for sensor, container_1, container_2, container_3, mixing unit and boiling unit. 

Interaction between blocks is represented with the assistance of flow-ports. The two blocks mixing unit 

and boiling units are labeled with a time period ti= [x, y], where „x‟ are the earliest time for action 

completed and „y‟ are the maximum time for action completed. The action mixing _unit takes at least 

50.5 and at most 70.5 units of time to end and action boiling unit takes at least 80.5 and at most 110.5 

units of time to end. 

In Figure 5.4, data sending and receiving is done by flow ports and its direction of arrow towards block 

(←) shows that block is receiving the data and direction of arrow away from block (→) shows that block 

is sending the data. The dashed arrow between blocks indicates the transition of state from one to another 

state as shown in Figure 5.4. 

5.3.1  Mapping SysML Internal Block Diagram to CTMC 

SysML internal block diagram of mixing plant is checked with the help of „PRISM‟. 

The SysML model is converted into CTMC model and continuous time constraint is employed to exhibit 

the real time behavior of the embedded system. PRISM language is module based and thus we converted 

every block in Figure 5.4 into module and converted six blocks into six modules. The module has 

variables, guard and commands. The command marked with action depicts the communication between 

modules. The flow-ports are utilized for interaction between blocks in internal block diagram and we 

utilized command label with action to indicate the interaction between modules in CTMC model. The 

section of module "boiling unit’s translated code is demonstrated in Figure 5.5. In Figure 5.5, there is a 

variable "regulator4" in module boiling unit which indicates the two states switch-on or switch-off. The 

switch-off indicates state „0‟ and switch-on indicates 

„1‟. The “regulator4” transit its state from 0 to 1 when mixing of all liquids have completed. The command 

label with action [flow to boil] represents the synchronization between modules mixing unit and boiling 

unit and liquid mixture will start flowing from mixing unit to boiling unit when mixing of liquid will be 

completed. The variable 

“mix=1” represents that it contain the mixture of all three liquids. The clock variable is declared with 

variable “time1” which represents the time constraint of the action completed in specified time. The time 

constraints 80.5 and 110.5 represents the continuous time because in continuous time we can define state 

at any value of time. The continuous time “time1>=80.5” represents that boiling unit take at least 80.5 

units of time to boil the liquid and “time1<=110.5” represents that the boiling unit will take maximum 
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110.5 units of time to complete the action. The last line of code in Figure 5.5 indicates that the regulator1, 

regulator2 and regulator3 will be switched-off when the regulator of boiling unit is switched-on. 

Figure 5.5 PRISM code-Liquid Fertilizer Mixing Plant 

 Table 5.3 Properties- Liquid Fertilizer Mixing Plant 

  

Property Description 

No.  

  

P1 On detection of specific liquid level through three sensors, the regulators 

 should be turned off automatically 

  

P2 When  mixing  unit  is  turned  on,  then  all  regulators  and  boiling unit 

 should be turned off 

  

P3 When  boiling unit  is  turned  on,  then  all  regulators  and  mixing unit 

 should be turned off 

  

P4 At the same time, no two regulators should be turned on 

  

P5 The mixing unit should not be turned on for more than 70.5 units of time 

  

P6 The boiling unit should not be turned on for more than 110.5 units of 

 time 

  

 

Table 5.3 Properties- Liquid Fertilizer Mixing Plant 
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For the measurement of some liquid flow from the container1, container2 and container3, we have 

adjusted threshold limit on regulator of containers. We adjusted threshold=20 for the container1 that 

regulator1 should be switched-off automatically when the liquid level comes to the threshold of 20. We 

adjusted threshold=10 for container2 and threshold=5 for container3, when liquid level comes to these 

limits then regulator2 and regulator3 should switch-off. 

Property CSL properties verified in PRISM Statu

s 

No.   

   

P1 E [ F s=1 &regulator1=0|s=2 & True 

 regulator2=0|s=3&regulator3=0 ]  

   

P2 E [F regulator1=0 & regulator2=0 & True 

 regulator3=0&regulator4=0&mix=1]  

   

P3 A [F regulator1=0 &regulator2=0 True 

 &regulator3=0&regulator4=1]  

   

P4 A [F regulator1=1 & (!(regulator2=1 True 

 &regulator3=1&regulator4=1))|regulator2=1&(!(regul

ar 

 

 tor1=1&regulator3=1&regulator4=1))|regulator3=1&(!

( 

 

 regulator2=1&regulator1=1&regulator4=1))|regulator

4 

 

 =1&(!(regulator2=1&regulator3=1&regulator1=1))]  

   

P5 A [F mix=1&time<=70.5] True 

   

P6 A [F regulator4=1&time1<=110.5] True 

   

Table 5.4 Properties Verified on PRISM- Liquid Fertilizer Mixing Plant 
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5.3.2  Properties 

The six properties are proposed to verify the SysML model of real-time embedded systems. The properties 

are stated in Table 5.3. We have used operators „A‟ and „E‟ to verify properties as shown in Table 5.4. 

The „A‟ operator states that property will always hold for all path and „E‟ operator states that the property 

will eventually hold for all paths. 

In Table 5.4, we have used the „F‟ operator and it is a special case of operator Until „U‟ that tells that the 

property will satisfy only when the condition written along with the „F‟ operator is true. A witness is also 

shown with property E [F condition] when the property result is true [47]. A counterexample is shown 

with property A [G condition] when the property result is false [47]. 

5.3.3  Experimental Results and Analysis 

The CTMC model is verified for both timed and untimed properties given in Table 5.3. In addition, Table 

5.4 demonstrates continuous stochastic logic (CSL) code for the aforementioned properties of Table 5.3. 

The verified status indicates all properties are true. The mixing plant is demonstrating the right behavior 

as described in requirements. The confirmation of two timed properties proves that the mixing and boiling 

units strictly obeying the strict time constraint and finished the operation in given time units. Time unit is 

an important feature in real time embedded systems and if system does not obey the strict time constraint 

then it will produce wrong results and system will divert from executing its actual functionality. 

The outcome indicates that the system is strictly adhere to the continuous timed feature as well as untimed 

properties and verify the system correctness at early design stage with the assistance of model checking 

tool. PRISM has the capability to support parallel composition of module, therefore it requires less time 

in verification compared to other model checkers. The proposed methodology assists the systems engineer 

in minimizing the risks that can be encountered during development stage by checking the systems at 

earlier design stage. Such risks would especially be related to real-time embedded systems and can lead 

to a number of problems such as redeveloping the entire system, product failure, loss of money or life. 

The re-development of the entire system costs much more than the verification of graphical models of 

real-time embedded systems at early design stage. 

5.4 Hybrid System Case Study of Temperature Control System 

Hybrid systems are real time digital and embedded control systems [45], hence we are taking the case 

study of embedded control systems that is "Temperature control system". In this subsection, the case study 

of Temperature control system is given to depict discrete and continuous behavior of the system. Initially, 

we formulate the formal specification of the case study and afterwards create the upgraded SysML block 

diagram from such specifications. The SysML model is translated into the input language of model 

checker „PRISM‟ and user requirements are converted to CSL properties for verification. At last, the 

experimental results of this case study are discussed. 

Conclusion 

With the growth in technology and ever growing need of software intensive applications, the real time and 

embedded system development require some serious attention for providing error free and high quality 

application. The early design verification and modeling is actually a tough job particularly for industrial 

and large scale application development. The methodology proposed in this paper allows formal modeling 

and verification of the system early design. We had four case studies and checked it. We simulate the 

system behavior of two case studies that comprised discrete and continuous time using SysML internal 

block diagram individually and checked it. We then have two case studies of hybrid systems, specify the 

system functionality formally, and represent the system components by enhanced SysML block diagram. 

Formal specification specifies how the components communicate with each other using communication 

channels and it also specifies the passage from one state to another state. Formal specification assists in 

supplying the semantics for every component supporting rich support to map to model checker language. 

Graphical model is mapped into PRISM model and user specifications are mapped into property 

specification language. The PRISM displays the verification results compared to the developed PRISM 

model. PRISM indicates the results as „True‟ when the property is satisfied and indicates the results as 
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„False‟ when the property is not satisfied. Counterexample is generated too if the property does not hold 

and it helps us to rectify mistakes in our system model. 

The graphical model of discrete and continuous timed based real time embedded systems i.e. SysML block 

diagram is validated using model checking tool. These SysML based graphical models enable us to verify 

the system correctness at the initial design stage. Additionally, we have taken into account two case studies 

of hybrid systems, given the formal specifications using the aid of hybrid automata, create SysML block 

diagram and then validated. Since hybrid automata are well-suited to the modeling of hybrid systems 

hence we have analyzed the two examples of hybrid systems that show discrete and continuous behavior. 

The initial design verification lowers the efforts and time of the system engineers and it assists to create a 

secure application. The suggested approach delivers substantial and precise outcomes and motivates the 

system and software engineers to apply our approach to formal modeling and verification of real time and 

embedded systems. The system and software engineers can apply our suggested approach to early design 

graphical modeling, specification and verification of real time embedded systems.  
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