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Abstract 
Android smartphone apps are becoming increasingly popular, but their security is a 

concern. Malware can cause damage to mobile devices and servers. Developing 

detection technologies to avoid attacks is crucial for protecting consumers' mobile 

devices, desktops, and servers. The goal of this study is to avoid malware attacks, 

which are addressed via static, dynamic and hybrid features. Combating such attacks 

requires effective malware detection tools. The framework restricts the deep learning 

architecture in order to find dependencies between APK-retrieved attributes. To 

examine the performance and robustness of our proposed system, we conducted a 

comprehensive experimental investigation that included machine learning and deep 

learning approaches. This study assesses the efficiency of LSTM for identifying 

Android malware appears in time-varying sequences of healthy and infected apps. 

To evaluate the AMalLSTM model, a set of malicious and benign Android 

applications, along with their package files containing features such as API calls, 

system call sequences, opcode sequences and permissions, are used. Nevertheless, 

the dataset has a balanced malware set for different types, but it does not cover the 

whole nature of Android malware and available tooling for producing new threats. 

Android malware classification accuracy is evaluated by means of deep learning 

models trained on the AMalLSTM framework. It works well on classification 

accuracy at low false positive and positive false negatives, thus being more 

favourable towards evasive virus tactics. The results demonstrate that the proposed 

approach e 

exceeds earlier algorithms with detection accuracy: 98.4%, precision: 98.5%, recall: 

97.2%, and F1 measure: 97.8%.Our future study is to apply LSTM network 

topologies to genuine Android malware samples, rather than static permissions or 

profiled program attributes.     

  Keywords: 
Android malware detection, deep learning model,  malware classifier, 

AMalLSTM 
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Introduction 

A highly popular mobile device platform offering numerous conveniences like texting, video chat, 

socializing through social media, use of internet and multiple IoT apps includes Android. It as an open-

source system, and the complexity of calls both system and API, make it attractive for viruses and make 

identification of malicious processes themselves challenging. This had led to open source platform being 

targeted by virus makers for instance its continuous attack force has shifted research towards the 

examination of risky android applications. By virtue of reasoning that software from the same family often 

takes similar actions, malware analysts are crucial in differentiating the malware families. Consequently, 

knowing the type of malware becomes even more important with this research revealing the existence of 

more bad software.[1]. Mobile phones are increasingly important for online shopping, instant messaging, 

and payments, but they also pose security risks. The open-source Android platform allows for easy 

creation of malware, which can send phony SMS, consume data, steal personal information, download 

malicious apps, and access remote control, threatening users' property and privacy [2].  

Smartphone malware on Android platforms, including Banking Trojans and automatic messaging exploits, 

poses a significant security threat, necessitating efficient detection and protection of users' assets due to 

its widespread use [3]. Anti-malware programs like McAfee and Kingsoft safeguard users from malware 

by utilizing signature-based techniques, which match malicious programs in databases [4].Mobile phones 

enable easy application design across industries, but also expose them to cyberattacks. Android-based 

applications saw the highest downloads in 2021, posing risks to data confidentiality, system availability, 

and integrity [5].  

Malware, designed to steal data and gain root access, is increasing due to the internet's expansion and 

software industry. Anti malware systems is an important area of study, and there is vast literature on this 

subject [6]. The Android platform has been attacked due to its popularity and relative openness to other 

programming environments. In the last few years, Android malwares have become increasingly common 

which poses great danger to Android security. Attackers have attacked the Android platform due of its 

increasing popularity and openness. The prevalence of Android malware has skyrocketed in recent years, 

endangering Android security in the process. In this way, by proposing measures for the accurate 

identification of the presence of Android malware [7], it is possible to eradicate malware. 

Based on the approaches the Android malware has been detected by using different methods which include 

signature-based [8]-[9] static analysis [10] [11] and dynamic analysis [12] [13].. Static analysis for 

detecting Android malware is a behavior-based technique. It examines how apps functional without even 

running the apps on a mobile device or an emulator. This approach is the favourite because of its ease and 

low implementation complexity and time as compared with other methods. Static features are analyzed 

by employing a reverse engineering toolkit, which includes APKTool [14] JADX [15] Dex2Jar [16] 

Android Studio [17] and Andro guard [18]. In contrast, dynamic analysis involves running a program on 

an emulator or device to imitate real-world behavior. This allows monitoring and recording of an 

application's runtime operations, including Operating system activity, network connectivity, and any 

actions that resemble any form of harmful activity. Some studies [19]-[20] utilized a hybrid analysis 

technique, developing strategies for developing malware detection models with reference to static and 

dynamic data. Android malware is continuously changing, and attackers use clever ways to avoid 

detection. To successfully address this expanding threat, improved real-time detection systems are 

required.  

Several scholars, including [22] Machine learning methods include SVMs, Naïve Bayesian networks, RFs, 

multilayer perceptron’s, and decision trees have been utilized to detect malware in Android applications, 

as reviewed in several studies [23]-[24] on Machine learning-based malware detection models use data 

from Android applications for training, testing, and validation. Researchers are using deep learning 

techniques, a sub-field of machine learning within AI, to combat harmful behavior by using neural 

networks with multiple parameters and layers. The study uses LSTM architecture to accurately identify 

malware on Android devices, improving model Interpretability, user trust, and integrating it with existing 
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security infrastructure. Static or dynamic or both types of techniques are used by researchers for studying 

mobile malware, where features are derived from the manifest files, code execution, and simulation which 

indeed yield excellent results when compared to the entire study based on individual techniques. Using 

this foundation, our method improves upon the prior technique as it achieves 99.94% of the effectiveness 

for identifying malware in recent datasets. [21].   

The primary contributions of our research work are outlined as follows:  

(1)We suggested an LSTM-based malware detection model to detect constantly emerging malware 

instances. Our technique is not just highly accurate for existing malware, but also for freshly discovered 

malware.  

(2)For the first time, we retrain a malware detection model utilizing long-short term memory, allowing it 

to battle newly created malware with unclear features.  

(3)Our method's accuracy has improved significantly over the prior method, which obtained 99.94% 

accuracy in malware detection on current data sets.  

Related Work 

Researchers have utilized machine learning and deep learning approaches to create malware and intrusion 

detection systems for Android because of its widely used platform and open source code [25]-[26]. The 

majority of them focused on mobile malware datasets, but few used desktop ones.  

A. Alzubaidi et al. (2021) in [27] discuss the growing threat of mobile malware on Android platforms and 

the current methods of detection, including machine learning (ML), deep learning (DL), and ensemble 

learning. They found ML-based techniques are most effective in detecting malware, while DL-based 

methods like CNN and RNN are effective in detecting fake apps.  

Vinayakumar et al. [28] utilized machine learning and deep learning methods for detecting malware using 

the Ember malware dataset. Additionally, when using this approach, might not be easy to deal with 

obfuscated code and zero day malware. Both static and dynamic analysis of Android applications and its 

features extracted from static code and dynamic behaviour were implemented using an LSTM 

architecture. The LSTM model produced the highest accuracy (98.9%) after 200 epochs of training [29].   

Amer and El-Sappagh [19] presented a behavioral predicted model of Android malware that incorporates 

static and dynamic characteristics. The deep learning LSTM model is utilized to organize API and system 

call sequences. Furthermore, ensemble machine-learning approaches are employed to classify Android 

permissions.  

Alkahtani and Aldhyani [30] propose a comparative analysis of malware detection on Android is done 

utilizing a variety of machine and deep learning methods. Depending on the outcome of the assessment 

reset, SVM, LSTM, and CNN-LSTM approaches are more successful at detecting malware that targets 

the Android platform. 

Ban et al. [31] utilized convolutional neural networks for Android virus detection. The researchers utilized 

a malware dataset with 28,179 records from 2018 to 2020 to identify the most prevalent malware actions. 

The experiments showed 98% accuracy with a F1-score of  0.82.  

Smmarwar et al. [32] proposed "wrapping feature selection" (WFS) approach.  A few of them were able 

to employ techniques such as random forest, decision trees and SVM classifiers. The classifiers are built 

with the optimal number of attributes originating from the CIC-InvesAndMal2019 malware dataset. Trials 

demonstrated the SVM, RF, and DT models attained accuracy rates of 82.33%, 91.32%, and 91.8%, 

respectively.  

Alshahrani et al. [33] created DDefender, malware detection system. This solution detects fraudulent 

Android apps using static and dynamic analysis as well as deep neural networks. Dynamic analysis 

extracts features including system data, network traffic, system calls, and permissions, while static 

analysis extracts key application components. The DDefender was trained and evaluated against 2.1k 

harmful and 2.1k benign applications. DDefender's evaluation findings indicate 95% accuracy. 

Lê et al. [34] present a detecting approach that uses machine learning that uses permissions and API 

attributes. Nevertheless, this method excludes installing the framework on Android smartphones. 
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Islam et al. [35] proposed a machine learning ensemble model for detecting Android malware employs 

dynamic feature analysis. However, the study did not ensure malware real-time detection is used. Bhat et 

al. [13] to detect malware, dynamic behavior analysis was employed in conjunction using system-centric 

characteristics and a stacking ensemble method. 

Methodology 

Overview of Proposed Approach 

This paper describes the Long Short-Term Memory (LSTM) network concept for identifying Android 

malware more effectively. It uses raw data from sources like API call sequences and network traffic 

patterns, preprocessing for model training, encoding categorical features, normalizing data, and handling 

missing or incomplete values. 

Due to feature selection, the LSTM network is made more accurate and efficient by reducing the idling 

components. Statistical analysis and machine learning techniques are employed to train model on 

informative data points. Adequate dataset partitioning offers a sound model for the discovery of malware 

in the real world. 

 
 

Figure 1: Proposed Framework 

 

Dataset Description: 

The Drebin Dataset is used in the current analysis and it is obtained from Kaggle which is an online 

platform where people share machine learning projects and data. The dataset may be accessed at the 

following link: /Kaggle/input/Drebin-dataset/drebin.csv 

It contains elaborated explanation of all the technical terms and references used regarding application 

development in Android as well as management of the system and its interaction with the hardware 

device.. Key components are services and binders for process communication, and Android binder and 

system level of operations for cross-process communication. Permissions and Telephony include sending, 

reading, and receiving SMS messages, accessing phone state, managing user accounts, and providing 

access to telephony services. Intent actions include broadcasting when the device has finished booting, 

sending data, and managing package changes. 
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Figure 2: Drebin Dataset 

Various Models: This stage represents the core of the deep learning model. It likely  

involves a Convolutional Neural Network (CNN), an Artificial Neural Networks  

(ANN), Radial Basis Function (RBF) Networks and AdaBoost. 

CNN: CNN architecture is effective in sentence-level classification, sentiment analysis, and question 

categorization, using convolution layers for high-level features and pooling layers for feature reduction. 

It detects Android malware using fully linked layers and Soft max layers for distinct families. 

Artificial Neural Networks (ANNs) are fully connected models that can learn complex patterns. 

Although versatile, they may not capture the temporal dependencies necessary for accurate viral detection. 

Radial Basis Function (RBF) Networks: A type of ANN that uses radial basis functions for activation. 

While effective for pattern recognition, these methods rely heavily on kernel selection and parameters and 

struggle with large datasets required in malware detection.  

AdaBoost is a potent ensemble learning technique to construct a strong classifier by using some weak 

classifiers. All training samples are first assigned the same weights, and then weak classifiers are 

iteratively trained according to changing weights in order to put more focus on misclassified samples. The 

core idea is to focus on difficult data to benefit later classifier’s performance.  

The classifier’s error (ϵ) at each iteration is calculated and its weight (α) is given by: 

𝛼𝑡 =
1

2
 𝐼𝑛 (

1 − 𝜖𝑡

𝜖𝑡
) 

Sample weights are then updated: 

𝑤𝑖 =  𝑤𝑖  ×  𝑒−𝛼𝑦𝑖ℎ(𝑥𝑖) 

It is a weighted sum of weak classifiers whose final strong classifier: 

𝐻 (𝜖) =  𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡ℎ𝑡(𝑥)) 

Long Short-Term Memory (LSTM) Network: RNN has been used in identifying Android malware 

while LSTM is appropriate for analyzing and predicting time series. The LSTM model presents a memory 

cell structure with three gates: It has input modulation and input connection along with modulators of 

individual output and connection to a modulation that may be referred as the input gate, forget gate and 

the output gate. In fact, the LSTM structure is made up of memory chunks. 

These gates and states are defined as below:  

Input gate:               

Input gate:               

it = σ(Wxixt +  Whiht − 1 +  bi)                                  

Forget gate:             

                                ft = σ(Wxfxt +  Whfht − 1 +  bf)                                 

Output gate:             



KJMR VOL.02 NO. 03 (2025) AMALLSTM: ANDROID MALWARE …… 

   

pg. 66 
 

                           ot = σ(Wxoxt +  Whoht − 1 +  bo)                         

Input Transform:      

                c_imt =  tanh(Wxcxt +  Whcht − 1 +  bcim )        

State update:           

                              it =  fiý ct − 1 +  itý c_imt)                                         

ht =  ot ý tanh (ct) 
where xt represents the input feature vector at time step t, W and b represent the weights and bias, 

respectively, and σ is the twisted activation function;  is the element-wise product, and the hidden layer 

output and memory cell are indicated by ct and ht.  

 
Figure 3: The fundamental composition of a long short-term memory cell. 

The input gate in LSTM networks allows the network to selectively recall or forget knowledge from earlier 

time steps by controlling the quantity of fresh information added to the cell state. It also restricts the 

quantity of data forgotten from the cell state, allowing the network to discover enduring dependencies. 

The output gate manages the quantity of data utilized to produce the output of the LSTM cell, capturing 

relevant information from the input sequence. The input transform, also known as the candidate hidden 

state or cell update, computes the new cell state at each time step 

Results and Discussion. 

In this section, Deep-learning experiments were conducted using DNN, CNN, LSTM, AdaBoost, and RF 

models to evaluate their usefulness and performance taking into account parameters such as F1-score, 

recall, accuracy, loss, precision and AUC-PR. The following sections provide details on each experiment 

and its outcomes.  

Experimental Setup: 

The study utilized advanced deep learning algorithms to recognize facial expressions, using Google 

Collab’s cloud-based platform for efficient resource allocation and reduced local hardware requirements. 

The model for detecting Android malware uses critical hyperparameters and preprocessing processes, with 

a learning rate defaulted to 0.001, 64 batch sizes, and a standard scaling of 'Standard Scaler'. The model's 

architecture consists of 64 and 128 unit LSTM layers, 0.2 dropout layers, and a dense layer with sigmoid 

activation. Data preparation involves transforming non-numeric values to NaN and label encoding. 

Comparison to other methodologies: 

This paper proposes LSTM model architecture for malware detection on Android and tests on benchmark 

dataset with respect to pre-trained model and other machine learning algorithms. The effectiveness of the 

model as applied to an array of tests, as well as the tweaking of hyperparameters, demonstrates the success 

of the model. 
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Table 1: Comparison with Proposed Model 

 

Model Accuracy F1-score Precision Recall 

CNN 0.9837 0.9782 0.9786 0.9777 

ANN 0.9844 0.9791 0.9786 0.9795 

RF 0.9867 0.9819 0.9945 0.9697 

RBF 0.9800 0.9869 0.9874 0.9865 

AdaBoost 0.9727 0.9632 0.9710 0.9554 

Proposed 

Approach LSTM 

0.9844 0.9789 0.9855 0.9724 

Results of CNN model 

The performance summary of the CNN approach in detecting malware in Android is provided in the table 

below. 

Table 2: Accuracy of CNN Model 

Metrics Accuracy Precision Recall F1-Score 

Values 0.983 0.978 0.979 0.978 

It is clear that the CNN model can be used to detect Android malware with good accuracy, good precision 

and good recall. However, if the exact deployment scenario requires a large number of iteration, then 

computational cost might be a major issue. 

Confusion Matrix 

The CNN model’s efficiency is affirmatively confirmed with the help of the confusion matrix that reveals 

high True Negatives and True Positives as well as low False Positives and False Negatives proving that It 

can distinguish between toxic and non-toxic applications while keeping the degree of error low and the 

level of accurate classification high. 

 
Figure 4 : Confusion Matrix of CNN Model 

Training and Validation Accuracy: 

This model’s learning curves of training and validation accuracy reveal improvement of the training and 

can generalize to new data sets with low training and validation loss. The model introduced here is not 

underfitting or overfitting, which contributes to the accuracy and stability of Android malware detection. 

The given model of FIG. 9 shows reasonable training and validation loss which indicate the successful 

training of the model without the problem of overfitting. 
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Figure 5: Graphical Explanation of Accuracy of Training and Validation and loss 

ANN Model 

Table of Accuracy 

The performance of the ANN model used in detecting malware on Android is given by the following 

performance indicators as shown in the table below: 

Table 3: Accuracy of ANN Model 

Metrics Accuracy Precision Recall F1-Score 

Accuracy 0.984 0.9786 0.9795 0.9791 

In the case of the ANN, for detecting Android malware, a measure of accuracy stands at 98.4%, while the 

recall rate equals 0.980 making a F1-score of 0.979. 

Confusion Matrix 

The confusion matrix of the ANN model employed in the Android malware detection is presented below: 

Table 4: Confusion Matrix of ANN Model 

 
Predicted Negative Predicted Positive 

Actual Negative 1861 24 

Actual Positive 23 1099 

The ANN model successfully detects Android malware with low false positive and false negative results 

High accuracy equal to 0.984, high precision of 0.979, high recall of 0.980, and a high F1-score of 0.979 

makes this model appropriate to be used 

 in cybersecurity systems. 

 
Figure 6: Confusion Matrix of ANN Model 
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Accuracy of Training and Validation  

The learning curves of ANN reveals that the model approaches high level of accuracy and low levels of 

loss over time making it easy to classify the applications as either benign or malicious. This is seen through 

the fact that it has been used to show the convergence of the training and validation losses thus showing 

its stability and dependability. 

 
 

Figure 7: Graphical Explanation accuracy of Training and Validation and loss 

 

Proposed Approach Results 

The following table shows the significant performance measures concerning LSTM used in identifying 

malware on Android: 

Table 5: Accuracy of Proposed Approach Model 

 

Metrics Accuracy Precision Recall F1-Score 

Values 0.984 0.985 0.972 0.978 

The metrics used to evaluate LSTM model prove its high efficiency while dealing with Android malware 

detection. Specifically it’s a totally automated system and said to have an accuracy of 98.4% with very 

low false positive rate. It also can discover a large amount of real malware; moreover, it has a small 

number of missed cases. A number of points, including the stability of the model, its high precision and 

accuracy, contribute to the reliability of the model as a tool for enhancing the cybersecurity measures. 

Confusion Matrix: 

According to the mentioned performance metrics, the confusion matrix of the LSTM model may be 

expressed as the following: 

Table 6: Confusion Matrix of Proposed Approach Model 

 

 
Predicted Negative Predicted Positive 

Actual Negative 1869 16 

Actual Positive 31 1091 

The developed LSTM model for Android malware detection had an accuracy of 98.4%, Precision of 0.985, 

Recall of 0.972 F1 score of 0.978, which makes it a perfect tool for cybersecurity. 
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Figure 8: Confusion Matrix of Proposed Approach 

Training and Validation Accuracy 

When it comes to Other Performance Measurements LSTM model the learning curves revealed high 

training and validation accuracies which ranges near 0.984 in the Training data set showing that the given 

model can learn the given data set, identifying good patterns while accurately predicting on the data sets 

which it has not encountered. 

 
Figure 9: Visual Representation of Training accuracy  and Validation loss 

Conclusion and Future Work: 

Android, one of the most common mobile platform, is vulnerable to attack because of its open, API 

interfaces. The mobile gadget is infected by viruses, worms, ransomware, spyware, Trojan horses, 

scareware, rootkit through system vulnerability. This research proposes a framework that utilizes LSTM 

to detect malware variants using a deep learning algorithm for this strategy. This research seeks to analyze 

and correlate long-term dependencies using LSTM to subsequent connection sequences.  

The research evaluates LSTM when detecting Android malware in variable sequences of benign and 

infected apps. It also shows how deep learning approaches namely LSTM are beneficial when identifying 

hidden virus patterns in distinct applications making it possible to safeguard users against malware. 

Future study will enhance detecting Android malware using network strategy, feature selection, statistical 

analysis, and machine learning strategy, focusing on memory block physics for improved results.  
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