
 
pg. 145 
 

 Kashf Journal of Multidisciplinary Research 

Vol: 02 - Issue 2 (2025) 

P-ISSN: 3007-1992 E-ISSN: 3007-200X 

https://kjmr.com.pk 

 

BI-DISTANCE PROCEDURE FOR EVALUATING THE 

TOPOLOGICAL INDICES FOR RHOMBUS OXIDE NETWORK  

Muhammad Imran 

Faculty of Sciences, The Superior University 

Lahore, Pakistan. 

Muhammad Rizwan Wahala 

Faculty of Sciences, The Superior University 

Lahore, Pakistan. 

 

 

 

Muhammad Nawazish Zaman 

Faculty of Sciences, The Superior University 

Lahore, Pakistan. 

Saima Mushtaq* 

Faculty of Sciences, The Superior University 

Lahore, Pakistan. 

Zunera Shoukat 

Faculty of Sciences, The Superior University 

Lahore, Pakistan. 
*Corresponding author: Saima Mushtaq (saimamushtaq.fsd@superior.edu.pk)   

DOI: https://doi.org/10.71146/kjmr291   

 

Article Info 

 

  

 

 

 

 

 

 

 
This article is an open 

access article distributed   

under   the   terms   and 

conditions of the 

Creative Commons 

Attribution (CC BY) 

license 

https://creativecommon

s.org/licenses/by/4.0 

 

Abstract 

 

This study explores the fractal nature of rhombus oxide network, leveraging 

molecular structure descriptors to correlate chemical structure with biological 

activity in pharmacology. By translating networks into graphical forms and 

utilizing degree-based topological indices, we calculate various indices 

(Randić, geometric arithmetic, atom bond connectivity, and more) and their 

polynomials for rhombus graphs using Mathematica. This computational 

approach enables the estimation of fractal, thermodynamic, and 

physicochemical aspects of chemical structures, informing configuration, 

impact resistance, and design in technical and scientific advancements. Our 

results provide a comprehensive understanding of chemical graph theory, 

facilitating the correlation of chemical structure with biological activity and 

contributing to significant advancements in pharmacology and materials 

science. 
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 bi-distance edges; edge computing, molecular structure; rhombus oxide network; 
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Introduction 

In the eighteenth century, the mathematician Leonhard Euler (1702–1782) of Switzerland is credited 

with introducing the term "graph" within the field of graph theory. The Königsberg Bridge Puzzle 

presented a challenge of crossing seven bridges over a divided river near an island without traversing 

any bridge more than once [1].  

Euler's analysis concluded that there exists no path that can traverse all bridges exactly once and return to 

the starting point. Though Euler's proof specifically addressed the physical arrangement of bridges, it 

essentially validated the foundational theorem of graph theory [2]. 

The mathematical discipline known as "graph theory" focuses on the study of structures composed of 

vertices connected by edges. Over time, graph theory has developed into a significant area of mathematical 

inquiry, finding applications in diverse fields. It's worth noting that all graphs discussed in this paper 

adhere to the criteria of being simple, connected, and planar. "Graph theory" is the mathematical term 

employed to examine graphs, which are mathematical representations utilized to depict pairwise 

connections between variables [3]. 

Graph Theory [4] offers an excellent mathematical foundation for handling a wide range of practical 

problems in genetics, psychology, sociology, and linguistics. Moreover, it boasts significant intersections 

with various other mathematical domains like topology, group theory, probability theory, and matrix 

theory, rendering it an adaptable and broad.  

A graph is a mathematical structure made up of vertices (also known as nodes or points) and edges (also 

known as links or arcs), which connect pairs of vertices. A graph G can be defined as a collection of 

vertices V and edges E, with each edge in E connecting two vertices in V. Graphs can be used to model 

item interactions, communication networks, physical structures, and much more. They are fundamental to 

many branches of mathematics, computer science, and other disciplines [5, 6]. 

Chemical graph theory is a branch of theoretical chemistry that uses GT to model chemical patterns 

quantitatively. By merging principles from chemistry and graph theory, it delves deeper into the 

exploration of the physical and chemical characteristics of substances. In this field, atoms are represented 

as vertices in a graph, while bonds between atoms are represented as edges. Chemical graph theory plays 

a crucial role in drug design, materials science, and computational chemistry, offering powerful tools for 

understanding and predicting the behavior of molecules [7].  

The connectivity of molecular graph is an essential aspect. They are required to be connected graphs 

because each atom in a molecule needs to be bonded to at least one other atom. This ensures that the 

molecule is a cohesive structure with no isolated atoms. By examining the molecular graph, scientists can 

gain insights into the molecular characteristics, like shape, extent, and chemical reactivity. Furthermore, 

various algorithms and techniques can be applied to analyze molecular graphs and predict the behavior of 

molecules, including their stability, reactivity, and physical properties [8]. 

Molecular topology plays a crucial role in various scientific fields and research areas that involve the study 

of molecular structures. One of the key components of molecular topology is the classification of 

molecules. By categorizing molecules based on their structural characteristics and properties, researchers 

can gain insights into their behavior and interactions. The use of molecular topology extends to the 

investigation of the physical occurrence of molecules. Researchers utilize statistical tools and models to 

analyze and understand the distribution, occurrence, and patterns of molecules in different environments 

or systems. These statistical approaches enable the discovery of new relationships, correlations, and 

trends in molecular behavior. Overall, molecular topology provides a framework for organizing and 
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studying molecular structures, and its applications are diverse and interdisciplinary. It contributes to 

advancements in fields such as chemistry, biochemistry, pharmaceutical sciences, materials science, and 

more, enabling researchers to uncover new knowledge and make significant discoveries in various areas 

of science and research [9, 10]. 

A Topological Index which is represented by TI (T-index) is a graph-based molecular description. The 

topological index, also referred to as the graph measure, is a set of data on algebraic graphs that provides 

a methodological framework for evaluating the basic features of chemical compounds. The concept of a 

TI was first initiated by Wiener in 1947 when he used it to investigate paraffin's boiling temperature [11]. 

The adoption of topological indices is a suitable way for expressing chemical components into data 

variables that can be associated with physical traits in quantitative structure-activity relationships and 

quantitative structure-property relationships research. TI value helps in understanding the relationship 

between the chemical structure and various physical properties, chemical reactions, or biological 

activities. Over the past twenty years, there has been a significant increase in the use of graph-theoretical 

methods to analyze the physicochemical and structural characteristics of molecular graphs. This trend is 

crucial for advancements in chemical engineering and pharmaceutical research [12].  

In the Quantitative Structure-Activity Relationship (QSAR) or Quantitative Structure Property 

Relationship (QSPR) assessment, a statistical method is employed to establish a connection between the 

configuration of a molecule and its related biological activity or characteristic. The objective of this type 

of study is to quantitatively link the two variables using analytical tools [13, 14]. 

T-indices offer a way to calculate network properties, particularly in understanding the structural 

characteristics of pharmaceuticals. The effectiveness of topological indices relies on how well they 

correlate experimental data with estimated values. TIs serve as an accessible and theoretical technique to 

acquiring extensive knowledge into medications by evaluating the structural features of distinct 

pharmaceutical compounds. The abbreviation "Top" refers to the topological index function, which maps 

a simple finite graph (denoted by Σ), to a real number (denoted by R). Based on a graph's topological 

characteristics, the TI function assigns an index to it. Notably, if two graphs 1G  and 2G  are isomorphic 

(meaning they have the same connectivity pattern but may differ in the labeling of vertices or edges), their 

topological indices will be equal. This can be expressed as 

 1 2 (  ) ( )T Gp Top Go = .        (1) 

Topological indices have been utilized to discover anticancer and anti-HIV drugs. Fortunately, 

mathematicians have effectively contributed by studying pharmaceutical action using graph theory. There 

are some major classes of topological indices such as distance based, degree based, eccentricity-based, 

and ev-degree-based indices [15].  

In this paper, a bi-distance approach is used to compute all additive degree-based indices for Rhombus 

Oxide Network (RHOX).  

2  Materials and Methods 

  In this paper, consider all graphs are simple (without loops and multiple edges), finite connected (exist at 

least one path between any pair of vertices), undirected (no direction in edges) and planer (without 

crossing edges). Let G be a graph with vertex set V (G) and edge set E (G). This paper use degree-based 

indices, encompassing additive variations. 
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2.1 Randić Index 

In 1975 [16], Milan Randić, a chemist, introduced a topological index known as the "branching index", 

but soon it was re-named to “connectivity index”. Nowadays, most authors refer to it as to the “Randić 

index” denoted as R 1
2

1  & )(R R− −
. This index was specifically crafted to measure the level of branching in 

saturated hydrocarbons' carbon-atom structure. This index is one of the oldest topological indices with the 

most widespread degree structures. It is a mathematical measure that quantifies the structural 

characteristics of a graph G  based on the degrees of its vertices [17, 18].  

The Randić Index is defined as  

( )

( )
( )

1
21
,( )

GE EG

R dG d
d d


 


   

−

 

= = 


 
  

                  (2) 

where  represents an edge in the graph.

 
2.2 General Randić Index 

Bollobás, a highly esteemed mathematician, along with Erdős, recognized the intricate mathematical depth 

concealed within the Randić index. They collaborated on this topic, publishing their initial paper around 

1998, though it had been circulating among mathematicians for several years prior [19]. For a (chemical) 

graph G = (V, E), the general Randić index ( )nR G  of G is defined as the sum of ( ) ( )( )
n

d d   overall 

edges   of G, where ( )d   denotes the degree of a vertex   of G, 

( ) ( )
( )

 ,
n

n

E G

R dG d


 


=                  (3) 

where n is an arbitrary real number. 

2.3 Reciprocal Randić Index 

The reciprocal Randic index, introduced by Favaron, Maheó, and Saclé in their research, is another 

variation derived from the Randic index [20]. 

( )
( )

 .
E G

R d dR G  


= 
        

                            (4) 

2.4 Atom Bond Connectivity Index 

In 1998, Estrada and Torres introduced a new topological index known as the "atom-bond connectivity 

index [21]" abbreviated as ABC. The Atom Bond Connectivity ( )ABC  index is a topological index used 

to quantify the structural properties of a graph [22]. 

For a graph G  with vertex set ( )V G  and edge set ( )E G , the ABC  index is defined as: 

( )
( )

    2
  ,

GE

d d
ABC

d d
G

 

  

+ −
=


                            (5) 

where d  and d  are the degrees of vertices   and  , respectively, in the graph G.  
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2.5 Geometric-Arithmetic Index 

Geometric-Arithmetic ( )GA  index is another well-known topological index. In 2009, Vukicevic and 

Furtula [23] proposed the GA Index. 

The name ‘geometric–arithmetic [24]’ comes from the fact that d d   and 1
2
( )d d +  are the geometric 

and arithmetic means, respectively, of the numbers d and d . Mathematically GA  index for a graph G  

is given by.           

 ( )
( )( )

2
  .

  GE

G
d d

d d
A G

 

  


=

+
                                  (6) 

2.5 Forgotten Index 

Followed by the first and second Zagreb indices, Furtula and Gutman (2015) introduced forgotten 

topological index. This is also called F-index [25] which was defined as 

2 2

( )

( ) ( ).
E G

F G d d 


= +                               (7)

 

2.6 Symmetric Division Index 

Among the latest developments is the symmetric division index [26]. Vukicević and Furtula introduced 

the degree-based symmetric division index. 

2 2

( )

1 .( )
E G

d d

d
SD G

d

 

  

+
=




    

                         (8)

 

 

2.7 Harmonic Index 

Siemion Fajtlowicz created a computer application in 1990 that produces its own theories in the field of 

GT. He discovered a vertex-degree-based measure while completing this project. In 2012, Zhong made a 

new discovery about these unidentified criteria and named it the harmonic index [27].  

1

( )

.( )
2

E G d d
H G

  

=
+


                 

               (9)

 

2.8 General Sum Connectivity Index 

The sum connectivity indices [28] general form was proposed by Zhou and Trinajstić. The ( )nX G -index 

is mathematically written as 

( ) ( )
( )

,
n

E

n

G

X dG d 


= +
            

               (10) 

where n is an arbitrary real number. 
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2.9 Bi-distance Edge Partitions 

The edge partition technique is utilized to divide the bi-distance edges [29] of rhombus oxide network into 

three categories, as presented in Tables 1. For rhombus oxide network, the frequency of E1 is 2, where 

( , ) (2,2).d d  = The frequency of E2 is 16n+4, where ( , ) (2,4).d d  =  And the frequency of E3 is 

212 2,n −  where ( , ) (4,4).d d  = This study employs various methods and techniques, including vertex 

degree analysis, edge partitioning, graph analytical approaches, and numerical comparisons, to generate 

results. MATLAB is used for computations and cross-validation, while Mathematica aids in comparing 

topological indices. Additionally, ChemDraw provides an efficient platform for drawing chemical 

structures. In the following section, several degree-based topological descriptors are applied to the 

rhombus oxide network. 

3  Results and Discussion 

   In this paper, the results of the several topological indices for rhombus oxide network ( )RHOX n  is 

discussed. 

3.1 Results of Rhombus Oxide Network ( )RHOX n  

TI including the Randić index ( ),R G  reciprocal Randić index ( ) ,RR G
 
geometric arithmetic index 

( ) ,GA G  atom-bond connectivity index ( ) ,ABC G  forgotten index ( ),F G  general sum connectivity index 

( ),gX G  symmetric division index ( ),SD G  harmonic index ( ),H G  are computed in this paper. 

 

Figure 1: Rhombus Oxide Network ( )RHOX n  

Theorem 3.1.1: Consider 1G  be a simple Rhombus Oxide Network ( ),RHOX n  then its Randić index and 

its general Randić indices are equal to, 
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( )2

2

2

2

1

8 24 16 1 ,

3 7
2 ,

4 8

48 32 2 8 2 4 ;
2

1
3 4 2 2

( )

, .
2 2

n

n n n

n
n n

R
n n n

n n

G

n







= 





+ + =

+ + = −


+ + −  =


+ + +


= −

 

Proof: 

Let 1G  be a simple, connected rhombus oxide network. The edge collection is divided into three 

distinct groups. The value of general Randić indices can be determined with the help of Table 1 of the 

edge partitions.      

 

           

 

   

Table 1:  Bi-distance Edge Partitions for Rhombus Oxide Network ( )RHOX n  

General Randić indices for the Rhombus Oxide Network can be calculated as 

( ) ( )
1

1

( )

 .
n

n

E G

R dG d



 

=   

( ) ( ) ( )
1 1 2 2 3 31 1 2 3( ) .

nn

n

n

G E d d E dR d E d d     =  +  +   

For 1,n =
 

( )( ) ( )( ) ( )( )
1 1 1

1 1

22 2 2 16 4 2 4 12 2 4 4 ,( )R G n n  + +  += − 
 

 

( )( ) ( )( ) ( )( )
1 12

1 1

1
( ) 4 ,82 16 4 12 12 6R G n n=  + + + −

 
 

( ) ( )( )2

1 1 8 16 4 (8) 12 2 ,( ) 16R n nG  + += + −
 

 

1

2

1 1) 1 8 892( 2 ,R G n n+ + =     

( )1

2

1 8 24 16 1 .( )R G n n+ +=  

For 1,n = −
 

Edges ( , )d d   Frequency 

1E  (2, 2)  2  

2E  (2, 4)  16 4n+  

3E  (4, 4)  212 2n −  
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( )( ) ( )( ) ( )( )
1 1 12

1 1 2 2 2 16 4 2 4 ,( ) 12 2 4 4R nG n
− − −

−
  + +  + − 
 

=  

( )( ) ( )( ) ( )( )
1

1

1 12

1 ,( ) 4 82 16 4 1 12 62R n nG
− − −

−
 + + +


= −


 

( ) ( ) ( )1

2

1

1 1 1
( )

4
42 16 12 2 ,

8 16
R n nG−

      
+ + + −      
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=


 

( ) ( )1

2

1 16 4 12 2 ,
1 1 1

( )
2 8 16

R n nG−

      
+ + + −      
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=


 

2

11

16 4 12 2
,

8

1
( )

2 16

n n
R G− =

  + −   
+ +    

      
 

1

2

1

1 1 3 1
( ) 2

2 4
,

2 8
R nG n− =

      
+ +     

 
+ −

    
 

2

11

3 7
( ) 2 .

4 8
R nG n− + +

 
=  
 

 

Now, here it is a reciprocal Randić index that can be expressed as 

( )
1

1

( )

 .
E G

R d dR G 





=   

When  
1

,
2

n =  

( )( ) ( )( ) ( )( )
1 1 1

2
2

2

1
2 2

1 2 2 2 16 4 2 4 12 2 4 4 ,( )RR G n n
 

 + + = + −  
 

 

( )( ) ( )( ) ( )( )
1 1

2
1

1
2

2 2
1

2

2 16 4 12 2 ,( ) 4 8 16RR n nG
 

+ += + − 
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( )( ) ( )( ) ( )( )22 3
1 1 1

2 2 2
1

2

4

1 2 16 4 12 2 ,( ) 2 2 2RR nG n
 

+ + + − 
 
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( ) ( ) ( )( )2

1

2

1

2

2 (2) 16 4 (2 2) 12 2 ,( ) 2RR n nG  + += + −
 

 

( ) ( )( )1

2

1

2

(4) 16 4 (2 2) 12 2 ,( ) 4RR nG n + + −


= +


 

( ) ( )2

11

2

(4) 32 2 8 2 48 8 ,( )RR n nG  + + + −
 

=  
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2

11

2

48 32 2 8 2 4 .( )RR n nG  + + −
 

=

 

Randić index is  

( )

( )
( )

1
2

1

1 1

2

1
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G GE E

d dG
d d

R 

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 
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1
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,
1 1 1

( )
4 16

R n nG
−


=

 
     + + + −     

      
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Theorem 3.1.2: Suppose 1G  be the Rhombus Oxide Network ( ),RHOX n  then general sum connectivity 

index is equal to, 

( )

( )

2

1
2

16 6 6 1 ,

1
18 32 11 ,

12

( )n

n n n

X G
n n n




= 


+ + =

+ + = −



 

Proof: 

For rhombus oxide graph, the general sum connectivity index is  

( ) ( )
1( )

1 .
n

G

n

E

X dG d 


= +  
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2

1 2 16 4 12 2 ,( ) 4 6 8X G n n + + + −
 

=  

( ) ( )1

2

1 8 96 24 96 16 ,( )X G n n + += + −
 

 

1

2

1 96 96) 16(X G n n= + +  

( ) ( )2

1 16 6 6 1 .X G n n+= +  

For 1,n = −
 

( ) ( )
1

1

1 1

( )

.
E G

X d dG  


−

−

= +  

After calculations the final result is obtained. 

( )( ) ( )( ) ( )( )
1 1 12

1 1 2 2 2 16 4 2 4 ,( ) 12 2 4 4X nG n
− − −

−
 + + + + + − +
 

=  

  ( )( ) ( )( ) ( )( )
1

1

1 12

1 ,( ) 4 62 16 4 12 2 8X G n n
− − −

−
 + + + −
 

=  
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( ) ( ) ( )1

2

1

1 1 1
( )

4
6 ,

6
2 12 2

8
1 4X n nG−

      
+ + + −      

     
=


 

( ) ( )2

11

1 1 1
( ) 4

2
,

6
2 6 1

8
4 1X n nG−

      
+ + + −      

     
=


 

( ) ( )1

2

1

1 1 1 1
( ) 12 1 ,1 2 12

12 2 3 4
2 4 6 1X G n n−

      
+ + + −      

   


  
=  

( ) ( )( ) ( )( )1

2

1

1
( ) 6 4 3

1
1

2
2 4 6 1 ,X nG n−

 + + −


= +


 

( ) ( ) ( )1

2

1 8
1

,( 6 32 1)
12

8 3X nG n−
 + += + −
 

 

( )1

2

1

1
18 32 11 .

12
( )X nG n− += +  

 

Theorem 3.1 3: Let 1G  be the Rhombus Oxide Network ( ),RHOX n  then ABC index is equal to, 

2

1

6 3 16 3 6
( ) .

2

n n
ABC G

+ − +
=  

Proof: 

By utilizing the edge partition of the graph, the ABC index is written as  

( )
( )1

1

    2
  .

GE

d d
ABC

d d
G

 

  

+ −
=




 

This implies that 

3 31 1 2 2

1 1 2 2 3 3

1 1 2 3( ) .A
d dd d d d

G E E E
d d d d d d

BC
    

     

+ −+ − + −
= + +

  
 

Now, 

( ) ( ) ( )1

22 2 2 2 4 2 4 4 2
2 16 4 12 2 .(

2 2 2 4 4 4
)ABC G n n=

+ − + − + −
+ + + −

  
 

After several iterations, the desired result is attained. 

( ) ( ) ( )2

1

2 4 6
( )

4
12 16 4 2

1
2 ,

8 6
A GBC n n+= + + −  
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( ) ( ) ( )2

1

1 1 3
( )

2 2
2 16 4 12 2 ,

8
A nGBC n+ + += −  

( )
1

216 4 12 2
3 ,(

2 2
)

2
2

n n
ABC G

+  −
= + +  

 
 

( )
1

216 4 2(6 1)
3 ,(

2 2 2
) 2

n n
ABC G

+ 
=

−
+ +  

 
 

( ) 2

1
2

( ) 2
16 4 6 3 3

,
2

n n
A C GB

 + −
+ + 

= 
 

 

2

1

2 16 4 6 3 3
( )

2
,

n
A

n
GBC

+ + + −
=  

2

1

6 3 16 3 6
.(

2
)

n n
A GBC

+ − +
=  

Theorem 3.1.4: If 1G  be the Rhombus Oxide Network ( ),RHOX n  then GA index is equal to, 

( )1

2 8
( 12 2 4 1 .)

3
G GA n n= + +  

Proof: 

The geometric arithmetic index is 

     ( )
( )1

1

2
  .

  GE

G G
d d

A
d d

 

  


=

+


 

Geometric arithmetic index for the Rhombus Oxide Network can be expressed as, 

( ) ( ) ( )2

1

2 2 2 2 2 4 2 4 4
2 16 4 12 2 ,

2 2 2 4
( )

4 4
GA n nG

       
+ + + −       

=
  + + +     

 

( ) ( ) ( )1

22 2 2
2 16 4 ,

4 8 16
( )

4 6
12 2

8
GA n nG

     
+ + + −          

   
=

 
 

( ) ( ) ( )1

2 ,
2

( )
4 3

2 2 2 2 4
2 16 4 12 2

8
GA n nG

     
+ + + −      

=
 
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( )( ) ( ) ( )( )1

22
( ) 1 1

3
,

2
2 16 4 12 2G GA n n

 
+ + + −

 
= 

 ( ) ( ) ( )1

2 ,
2

( )
3

2
2 16 4 12 2GA n nG

 
+ + + − 


=




 

1

2 32 2 8 2
12

3
) ,(

3
G n nGA += +  

( )1

2 8
( 12 2 4 1 .)

3
G GA n n= + +  

Theorem 3.1.5: For Rhombus Oxide Network ( ),RHOX n  the forgotten index will be equal to, 

( )2

1( 32 12 10 1 .)F nG n+= +  

Proof: 

Let 1G  be the Rhombus Oxide Network. Then, forgotten index is written as  

1

2 2

1

( )

( ) ( ).
E G

F G d d 


= +
 

This suggests that 

( ) ( ) ( )
1 1 2 2 3 3

2 2 2 2 2 2

1 2 31( )F E d d E d d E dG d     = + + + + +   

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2 2 2 2 22

1( ) 2 2 2 16 4 2 4 12 2 4 4 ,F G n n + + + + += − +
 

 

( )( ) ( )( ) ( )( )2

1( ) 2 4 4 16 4 4 16 12 2 16 16 ,F G n n + + + + += − +
 

 

( )( ) ( )( ) ( )( )2

1 ,8 20( ) 2 16 4 12 2 32F G n n + + −


= +


 

2

1( ) 16 320 80 384 ,64F G n n= − + + +   

( )2

1( ) 32 12 10 1 .F G n n+= +  

Theorem 3.1.6: If 1G  be the Rhombus Oxide Network ( ),RHOX n  then symmetric division index is equal 

to, 

2

1( ) 24 40 10.SD G n n+= +  

Proof: 

The symmetric division index is 
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1

2

( )

1

2

.( )
E G

d d

d
SD G

d

 

  

+
=


  

Symmetric division index for the Rhombus Oxide Network can be summarized as, 

( ) ( ) ( )
2 2 2 2 2 2

2

1

2 2 2 4 4 4
( ) 2 16 4 12 2 ,

2 2 2 4 4 4
SD G n n

     + + +
+ + + −     

       
=  

( ) ( ) ( )2

1 ,
4 8

4 4 4 16 16 16
( ) 2

1
2 16 4 12

6
SD G n n

+ + +     
+ + + −     

  
=

  
 

( ) ( ) ( )2

1

8 20 32

4 8
,( ) 2 16 4 1

1
2

6
2SD G n n

     
+ + + −     

  
=

  
 

( ) ( )( )2

1 ,
5

4 2
2

( ) 16 4 12 2SD G n n
 

= + + + − 
 

 

2

1

80 20
( ) 24 4,

2
4

n
SD G n+ +=

+
−  

2

1 14( ) 40 0 24 4,SD G n n= + + + −  

2

1( ) 24 40 10.SD G n n+= +  

Theorem 3.1.7: Consider 1G  be the Rhombus Oxide Network ( ),RHOX n
 so harmonic index is equal to, 

2

1

16 11
( ) 3 .

3 6

n
H G n += +  

Proof: 

The harmonic index is 

1( )

1

2
.( )

E G

H
d

G
d  

=
+

  

For rhombus oxide graph, the harmonic index result is attained after several iterations. 

( ) ( ) ( )2

1

2 2 2
( ) 2 16 4 12 2 ,

2 2 2 4 4 4
H G n n

     
+ + + −     

+ +  
=

+  
 

( ) ( ) ( )2

1 ,
4 6

2 2 2
( ) 2 16 4

8
12 2H G n n

     
+ + + −  =   

     
 

( ) ( ) ( )2

1 ,
1 1 1

2 3
( ) 2 16 4 12 2

4
H G n n

     
+ + + −     

    
=


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2

1

1
,

16 4
1

3 4

2 2
( )

n
H

n
G

 − 
+ +   
   

+
=  

2

1

16 4
( ) 3 ,

3 3

1
1

2

n
H G n+ −+ +=  

2

1

16 11
( ) 3 .

3 6

n
H G n += +

 

3.3 Numerical Analysis  

In this section, the comparison of all above topological indices for rhombus oxide network  through tables 

are discussed. 

n 
11

2

( )R G
−

 
2

11 ( )RR G  11( )X G  11( )X G−  1( )ABC G  
1)(GA G  1( )F G  

1( )SD G  
1( )H G  

1 10.57 100.56 208 5.08 21.68 30.85 736 74 10.16 

2 25.22 289.82 592 12.25 55.03 81.94 2208 186 24.5 

3 45.88 575.07 1168 22.41 103.09 157.02 4448 346 44.83 

4 72.54 956.33 1936 35.58 165.84 256.11 7456 554 71.16 

5 105.19 1433.59 2896 51.76 243.29 379.19 11232 810 103.5 

6 143.85 2006.84 4048 70.91 335.44 526.28 15776 1114 141.83 

7 188.51 2676.1 5392 93.08 442.28 697.36 21088 1466 186.16 

8 239.16 3441.35 6928 118.25 563.83 892.45 27168 1866 236.5 

9 295.82 4302.61 8656 146.41 700.06 1111.54 34016 2314 292.83 

10 358.48 5259.86 10576 177.58 851.00 1354.62 41632 2810 355.16 

 

Table 2: Numerical Analysis for rhombus oxide network 

3.4 Discussion 

The arrangement and connectivity of the atoms in a molecule are described by a topological index, which 

can also be used to offer information on the characteristics and effects of the chemical substance involved. 

A molecular graph is a graph-theoretical depiction of the structural formula of a chemical compound, 

where the vertices are the atoms of the complex and the edges are its chemical bonds. Chemoinformatics 

is a relatively new discipline that combines chemistry, information science, and mathematics. It examines 

the relationships between QSAR and QSPR, which are used to forecast physiologically active molecules 

and chemical compound properties. 

 Graphs are universal structures that are used to model various relations and processes in different fields of 

sciences, such as physics, chemistry, biology, and economics. In computer science, graphs are also 

essential in networking and database applications. In geometry, the structure of points and lines has 

significant importance, where each point has a geometrical significance, and the slope of each line is 

particular. To analyze situations modeled by graphs, one must have a better understanding of graph 

terminologies. 

In CGT , a number of graph-based indices and descriptors have been created to measure various molecular 

features. These descriptors comprise topological indices, connection indices, chemical fingerprints, and 
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the number of vertices. These techniques aid in describing molecular structures and foretelling their 

chemical, physical, and biological characteristics. 

 The Wiener, Randi'c, Zagreb, and Balaban indices are examples of biological indicators that are used to 

predict and investigate the physical and chemical characteristics of chemical compounds. 

In mathematical chemistry, the topological index, which can be an integer, polynomial, or other sequence 

of integers and a matrix that specifies the whole network, is used to describe the molecular structure within 

each chemical element. A crucial part of graph theory is chemical graph theory. Chemical networks have 

intrigued researchers since their inception because of their widespread application. 

 A unique and interesting topic in graph theory is figuring out the equations for topological indices of 

rhombus graphs. In this study, certain graphs produced by the hexagonal shape are examined, and the 

precise results for various degree-based topological indices are found. Additionally, a visual comparison 

of all produced indices is provided. Chemical networks are transformed into a quantity that describes their 

topology to provide topological indices. 

 Degree-based topological indices and measuring topological indices are two examples of the numerous 

topological indices for graphs. The above indices can be used to learn more about the compound's 

physical-chemical properties, biological functions. The discussion focuses on the results of various indices 

for two different network types: Rhombus Oxide network.  

4  Conclusion 

 Topological indices, which typically do not depend on graphs, are numerical characteristics that convey 

a system's topology. To anticipate the biological activities and characteristics of chemical compounds, 

topological indices offer a mathematical foundation for the development of quantitative structure-activity 

relationships (QSAR) and quantitative structure-property relationships (QSPR). 

The application of topological polynomials in GT  and their significance in representing graph invariants. 

These polynomials are used to describe the topology of chemical structures and execute a part in 

quantitative structure-property relationships (QSPR). Distance-based TIs  are widely used and studied in 

CGT . In paper, the main focuses on computing the randić index ( ),R G  general randić index ( ) ,gR G  

reciprocal randić index ( ) ,RR G ( ) ,GA G ( ) ,ABC G ( ),F G  general sum connectivity index ( ),gX G  

symmetric division index ( ),SD G  harmonic index ( )H G , along with their corresponding polynomials, for 

rhombus graphs. Additionally, the study includes a comparison of these indices to analyze their relative 

properties and relationships. 
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