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Abstract 

 

This article focuses on the geometric properties of normalized 

Rabotnov function. We use constructive tactics to establish the 

conditions for close-to-convexity and find conditions under 

which the normalized Rabotnov function is star-like and 

prestarlike. We also apply the starlike function ϑ/(1-ϑ^2 ) to 

establish the conditions for close-to-convexity. 
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Introduction 

The most well-known and extensively researched class of analytic functions 𝑓, denoted by 𝜆, have the 

form  

𝜆(𝑡) = 𝑡 + ∑ 𝑎𝑛𝑡𝑛
∞

𝑛=0
 

A function is referred to as convex if it maps Մ into a convex domain and starlike if it maps Մ onto a 

domain that is starlike regarding to origin. The class of all starlike as well as convex univalent functions 

belongs to Մ is represented by Ȿ∗ and Ĉ, respectively. The definitions of Ȿ∗ and Ĉ 's generalizations, 

represented by Ȿ∗(𝜎) (starlike) and Ĉ(𝜎) (convex) of order 𝜎[0, 1] respectively, are 

Ȿ∗(𝜎) = {𝑓: ℝ (
𝜗𝑓′(𝜗)

𝑓(𝜗)
) > 𝜎, 𝜗 ∈ Մ}, 

and 

Ĉ(𝜎) = {𝑓: ℝ (1 +
𝜗𝑓′′(𝜗)

𝑓′(𝜗)
) > 𝜎, 𝜗 ∈ Մ }. 

 

For the order of 𝜎, the close to convex function is defined as  

 

𝓀(𝜎) = {𝑓: ℝ (
𝜗𝑓′(𝜗)

𝑔(𝜗)
) > 𝜎, 𝜗 ∈ Մ, 𝑔 ∈ Ȿ∗(0) }. 

 

The convolution of functions (Hadamard product) is defined by 

(𝑓 ∗ 𝑔)(𝜗) = 𝜗 + ∑ 𝑐𝑣𝑐𝑣𝜗𝑣

∞

𝑣=2

       (𝜗 ∈ Մ). 

Using this convolution concept, Ruscheweyh [1] developed a class ℜ𝔉, it includes the following 

prestarlike functions of order 𝔉, 

 

Let 𝑓 ∈ Å. Then, 𝑓 ∈ ℜ𝔉 if and only if 

                                                    {
ℝ

𝑓(𝜗)

𝜗
> 0, 𝜗 ∈ Մ ,    for   𝔉 = 1   

𝜗

(1−𝜗)2(1−𝔉) ∗ 𝑓(𝜗) ∈ Ȿ∗(𝔉 ), 𝜗 ∈ Մ for  0 ≤  𝔉 < 1.
  

When we put 𝔉 =
1

2
 then 

Ĉ = ℜ0 and Ȿ∗ (
1

2
) = ℜ1

2⁄  

The class ℜ[𝛼, 𝔉] was created by generalizing the class ℜ𝔉 by Sheil-Small et al. [2].  

A function 𝑓 ∈ ℜ[𝛼, 𝔉] if 𝑓 ∗ Ȿ𝛼 ∈ Ȿ∗(𝔉), where Ȿ𝛼 =
𝜗

(1−𝜗)2−2𝛼, 0 ≤ 𝛼 < 1.  

It is observed that ℜ[𝔉, 𝔉] = ℜ𝔉. 

𝑓(𝜗̅) = 𝑓(𝜗).̅̅ ̅̅ ̅̅ ̅ 

An analytical continuation to the entire complex plane is the aforementioned extension formula [3]. The 

Harmonic Functions Minimum Principal (MP) states that unless a harmonic function u is constant, it 

can’t have  minimum or maximum at an interior point [4]. 

The Robertsnov functions, also known as Rabotnov functions, are special functions used in 

viscoelasticity theory, particularly in the modeling of hereditary materials. These functions are 

instrumental in describing the time-dependent stress-strain relationships in materials that exhibit both 



KJMR VOL.02 NO. 02 (2025) SOME GEOMETRIC PROPERTIES … 

   

pg. 78 
 

elastic and viscous behavior. Yuri Nikolaevich Rabotnov (1914–1985) was a prominent Russian 

scientist renowned for his contributions to mechanics, particularly in the field of viscoelasticity. In 1948, 

he introduced a fractional operator to model the behavior of materials with memory effects, a concept 

central to viscoelastic theory [5]. This operator, now known as the Rabotnov fractional-exponential 

function. Rabotnov's work laid the foundation for the application of fractional calculus in modeling the 

hereditary properties of materials, allowing for a more accurate description of stress-strain relationships 

over time. Despite being aware of the connection between his fractional operator and fractional 

derivatives, Rabotnov preferred to work with integral equation methods. His pioneering efforts have 

significantly influenced contemporary studies in viscoelasticity and continue to be a cornerstone in the 

field. 

 The Rabotnov function is defined by 

𝔎μ,β(t) = tμ ∑
βk

Γ((k+1)(1+μ))
 tk(1+μ)∞

k=0 . 

Here 𝛤 represents the Gamma function. In practice, the Rabotnov function may be represented in 

various forms, often involving convolution integrals. For a material under stress σ(t) and strain ϵ(t) , the 

Rabotnov function 𝔎(t) might be expressed as: 

σ(t) = ∫ 𝔎(t − μ)
dϵ(μ)

dμ

t

0

 dμ, 

Where 𝔎(t) is a relaxation function characterizing the material response over time. The Rabotnov 

function 𝔎𝜇(𝑡) has integral representations involving exponential and power-law terms: 

𝔎𝜇(𝑡) =
1

2𝜋𝑖
 

Rabotnov [6] created the fractional exponential function, sometimes referred to as the Rabotnov 

fractional exponential function (RFEF), in 1948. The Rabotnov function [5] plays a crucial role in the 

mathematical modeling of scientific and technical problems [7].  Yang et al. [7] introduced a highly 

interesting non-integer-order derivative operator in the context of the FREF five years ago, in 2019. The 

authors approximated an arbitrary-order heat transfer equation using their operator [7]. For more details 

about the Rabotnov function, see [8] and [9]. 

For our main results, we use the following lemmas. 

Lemma 1 [10] Consider the sequence {𝑐𝑣}𝑣=1
∞  of positive real numbers such that 𝑐1 = 1. Let 𝑐1 ≥ 8𝑐2 

and (𝑣 − 1)𝑐𝑣 − (1 + 𝑣)𝑐𝑣+1 ≥ 0, ∀𝑣≥ 2. Then, 

𝑓(𝜎) = 𝜎 + ∑ 𝑐𝑣𝜎𝑣

∞

𝑣=2

∈ 𝐾 

with respect to starlike function 
𝜎

1−𝜎2
. 

Lemma 2 If the function 𝑓(𝜎) = ∑ 𝑐𝑣𝜎𝑣−1∞
𝑣=1 , where 𝑐1 = 1 and 𝑐𝑣 ≥ 0, ∀𝑣≥ 2 is analytic in 𝑈, and if 

{𝑐𝑣}𝑣=1
∞  is a convex decreasing sequence, 𝑖. 𝑒. , 𝑐𝑣+2 − 2𝑐𝑣+1 + 𝑐𝑣 ≥ 0 and 𝑐𝑣 − 𝑐𝑣+1 ≥ 0, ∀𝑣≥ 1, then 

ℝ𝑓(𝜎) >
1

2
, ∀𝜎∈ U. 

2. Main Results: 

Theorem#1 Suppose 𝑎, 𝑏 ≥ 1, and 𝛤(𝑎 + 𝑏) ≥ 8𝛤(𝑏), 2𝛤(2𝑎 + 𝑏) ≥ 3𝛤(𝑎 + 𝑏) are satisfied. Then 

𝔎𝑎,𝑏 ∈ 𝓀  with respect to starlike function 
𝜗

1−𝜗2. 

Proof:   Consider 

𝔎𝑎,𝑏(𝜗) = 𝜗 + ∑ 𝑐𝑣𝜗𝑣

∞

𝑣=2

 

where   
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             𝑐𝑣 =
𝛽𝑣−1𝛤(1+𝜇)

𝛤((1+𝜇)𝑣)
     for 𝑣 ≥ 1, 𝑎𝑛𝑑 𝑐1 = 1 

∀ 𝑣 ≥ 2, we have to show that 𝑐𝑣 satisfies the conditions of lemma 1.  

Clearly 𝑎 ≥ 1 as well as  𝑏 ≥ 1 , the inequality 

𝛤(𝑎 + 𝑏) ≥ 8𝛤(𝑏)  

is satisfied. 

Additionally,  

𝑐1 = 1 and 𝑐1 >≈ 8𝑐2 

⟹    

𝑐1 =
𝛽1−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇). 1)
 

=
1. 𝛤(1 + 𝜇)

𝛤(1 + 𝜇)
 

= 1 

Also 

𝑐2 =
𝛽2−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇). 2)
=

𝛽𝛤(1 + 𝜇)

𝛤((1 + 𝜇)2)
 

𝑐1 >≈ 8𝑐2 

Again for 𝑣 ≥ 2, consider 
(𝑣 − 1)𝑐𝑣 − (𝑣 + 1)𝑐𝑣+1 > 0 

(𝑣 − 1)
𝛽𝑣−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣)
− (𝑣 + 1)

𝛽𝑣𝛤(1 + 𝜇)

𝛤((1 + 𝜇)(𝑣 + 1))
> 0 

(𝑣 − 1)
𝛽𝑣−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣)
> (𝑣 + 1)

𝛽𝑣𝛤(1 + 𝜇)

𝛤((1 + 𝜇)(𝑣 + 1))
 

(𝑣 − 1)
𝛽−1

𝛤((1 + 𝜇)𝑣)
>

(𝑣 + 1)

𝛤((1 + 𝜇)(𝑣 + 1))
 

(𝑣 − 1)

𝛽𝛤((1 + 𝜇)𝑣)
−

(𝑣 + 1)

𝛤((1 + 𝜇)(𝑣 + 1))
> 0 

(𝑣 − 1)𝛤((1 + 𝜇)(𝑣 + 1)) − (𝑣 + 1)𝛽𝛤((1 + 𝜇)𝑣) > 0 

Putting 𝑣 = 2 

𝛤((1 + 𝜇)3)

𝛤((1 + 𝜇)2)
− 3𝛽 > 0 

One can easily observe that the above expression for 𝑎 ≥ 1, 𝑏 ≥ 1, is non-negative if 

2𝛤(2𝑎 + 𝑏) ≥ 3𝛤(𝑎 + 𝑏). It is evident that {𝑐𝑣}𝑣=1
∞  satisfies Lemma 1. This proved the 

result. ∎   

Theorem#2 Suppose that 𝑎 ≥ 1, 𝑏 ≥ 1, and 𝛤(𝑎 + 𝑏) > 𝛤(𝑏), {2𝛤(2𝑎 + 𝑏) + 𝛤(𝑏)}𝛤(𝑎 +

𝑏) > 4𝛤(𝑏)𝛤(2𝑎 + 𝑏), are satisfied. Then, ℝ {
𝔎𝑎,𝑏(𝜗)

𝜗
} >

1

2
, 𝑓𝑜𝑟 𝜗 ∈ Մ. 

Proof. To find our results, we have to prove that the sequence 

{𝑐𝑣}𝑣=1
∞ = {

𝛽𝑣−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣)
}

𝑣=1

∞

 

is decreasing. Since  

𝛤((1 + 𝜇)𝑣 + 1) > 𝛤((1 + 𝜇)𝑣)                          (∀ 𝑣 ≥ 1, 𝑎 ≥ 1 𝑎𝑛𝑑 𝑏 ≥ 1) 

Therefore 
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𝛤((1 + 𝜇)𝑣 + 1)

𝛤(𝑏)
>

𝛤((1 + 𝜇)𝑣)

𝛤(𝑏)
 

⟹  
𝛤(𝑏)

𝛤((1 + 𝜇)𝑣)
>

𝛤(𝑏)

𝛤((1 + 𝜇)𝑣 + 1)
 

Now, we demonstrate that the sequence {𝑐𝑣}𝑣=1
∞  is decreasing and convex. For this we show 

that  

𝑐𝑣 + 𝑐𝑣+2 − 2𝑐𝑣+1 ≥ 0 

𝛽𝑣−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣)
+

𝛽𝑣+1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣 + 2)
− 2

𝛽𝑣𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣 + 1)
≥ 0 

𝛤(1 + 𝜇) {
𝛽𝑣−1

𝛤((1 + 𝜇)𝑣)
+

𝛽𝑣+1

𝛤((1 + 𝜇)𝑣 + 2)
− 2

𝛽𝑣

𝛤((1 + 𝜇)𝑣 + 1)
} ≥ 0 

            𝛤((1 + 𝜇)2)𝛤((1 + 𝜇)3) ≥ 2𝛽𝛤(1 + 𝜇)𝛤((1 + 𝜇)3) − 𝛽2𝛤(1 + 𝜇)𝛤((1 + 𝜇)2) 

           𝛤((1 + 𝜇)2)𝛤((1 + 𝜇)3) ≥ 𝛽 𝛤(1 + 𝜇)[2𝛤((1 + 𝜇)3) − 𝛽𝛤((1 + 𝜇)2)] 

1

𝛽𝛤(1 + 𝜇)
≥

2𝛤((1 + 𝜇)3) − 𝛽𝛤((1 + 𝜇)2)

𝛤((1 + 𝜇)2)𝛤((1 + 𝜇)3)
 

𝛤(2 + 2𝜇)𝛤(3 + 3𝜇)

𝛽𝛤(1 + 𝜇)
≥ 2𝛤(3 + 3𝜇) − 𝛽𝛤(2 + 2𝜇) 

𝛤(2 + 2𝜇)𝛤(3 + 3𝜇)

𝛽𝛤(1 + 𝜇)
+  𝛽𝛤(2 + 2𝜇) ≥ 2𝛤(3 + 3𝜇) 

Which shows that the sequence {𝑐𝑣}𝑣=1
∞  is a convex decreasing. Now, from lemma 2 {𝑐𝑣}𝑣=1

∞  

satisfy ℝ(∑ 𝑐𝑣
∞
𝑣=1 𝜗𝑣−1) >

1

2
, for all 𝜗 ∈ Մ 

Therefore,  

ℛ {
𝔎𝑎,𝑏(𝜗

𝜗
} >

1

2
, 𝑓𝑜𝑟 𝜗 ∈ Մ. 

Hence the result is proved. ∎ 

Theorem#3 Suppose 𝑎 ≥ 1, 𝑏 ≥ 1 and 𝛤(𝑎 + 𝑏) > 2𝛤(𝑏), {2𝛤(2𝑎 + 𝑏) + 3𝛤(𝑏)}𝛤(𝑎 +
𝑏) > 8𝛤(𝑏)𝛤(2𝑎 + 𝑏) are satisfied. Then the normalized Rabotnov function 𝔎𝑎,𝑏 ∈ Ȿ∗. 
Proof: To prove that 𝔎𝑎,𝑏 ∈ Ȿ∗, we show that {𝑣𝑐𝑣} and {𝑣𝑐𝑣 − (𝑣 + 1)𝑐𝑣+1} are non-

increasing. Because 𝑐𝑣 ≥ 0 for 𝔎𝑎,𝑏(𝑣) under the given conditions. So, let  

{𝑣𝑐𝑣 − (𝑣 + 1)𝑐𝑣+1} > 0 

𝑣 [
𝛽𝑣−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣)
] − (𝑣 + 1) [

𝛽𝑣+1−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)(𝑣 + 1))
] > 0 

𝑣
𝛽𝑣𝛽−1𝛤(1 + 𝜇)

𝛤((1 + 𝜇)𝑣)
> (𝑣 + 1)

𝛽𝑣𝛤(1 + 𝜇)

𝛤((1 + 𝜇)(𝑣 + 1))
 

𝑣𝛤((1 + 𝜇)(𝑣 + 1)) − 𝛽(𝑣 + 1)𝛤((1 + 𝜇)𝑣)

𝛽𝛤((1 + 𝜇)𝑣)𝛤((1 + 𝜇)(𝑣 + 1))
> 0 

𝛤((1 + 𝜇)2) − 2𝛽𝛤((1 + 𝜇)

𝛽𝛤((1 + 𝜇)𝛤((1 + 𝜇)2)
> 0 

𝛤((1 + 𝜇)2) > 2𝛽𝛤((1 + 𝜇) 

Now,  
(𝑣 + 2)𝑐𝑣+2 − 2(𝑣 + 1)𝑐𝑣+1 + 𝑣𝑐𝑣 
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𝛽𝑣𝛤(1 + 𝜇) [
(𝑣 + 2)𝛽

𝛤((1 + 𝜇)(𝑣 + 2))
−

2(𝑣 + 1)

𝛤((1 + 𝜇)(𝑣 + 1))
+

𝑣

𝛽𝛤((1 + 𝜇)𝑣)
] 

𝛽𝛤(1 + 𝜇) [
3𝛽

𝛤((1 + 𝜇)3)
−

4

𝛤((1 + 𝜇)2)
+

1

𝛽𝛤(1 + 𝜇)
] 

3𝛽2𝛤(1 + 𝜇)𝛤((1 + 𝜇)2) + 𝛤((1 + 𝜇)2)𝛤((1 + 𝜇)3) > 4𝛽𝛤(1 + 𝜇)𝛤((1 + 𝜇)3) 

3𝛽2𝛤(1 + 𝜇) + 𝛤((1 + 𝜇)3) −
4𝛽𝛤(1 + 𝜇)𝛤((1 + 𝜇)3)

𝛤((1 + 𝜇)2)
> 0 

Hence, the Normalized Rabotnov function 𝔎𝑎,𝑏 ∈ Ȿ∗. 
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