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Abstract 
 

Topological indices are numerical parameters that reflect the structural features of 

molecular systems. This research compute some degree based topological indices of 

2-Dimensional, Triangular, and Rhombus Silicate networks using graph theory, 

which is a representation of complicated chemical and physical networks. In 

particular, we evaluate the Harmonic K-Banhatti Index (HKB), K-Banhatti Somber 

Index (KBS), K-Banhatti Somber Reduced Index (KBSR), and other related classes 

of entropy to measure the structural complexity and growth phenomena of these 

networks. The results of this study also confirm the conjecture that KBS R index is 

the most sensitive to the topological changes and growth dominates networks with 

the highest entropy. Performance and entropy analysis of structures reflections 

reveals that with certain values of the size parameter k there exists some level of 

network complexity . This study investigates the mathematical expression of silicate 

networks, intermediate between network science, chemical modeling, materials 

science, and provides the precise computational tools with modern algorithm via 

MATLAB. 

  Keywords: 

Silicate Networks, Topological Indices, Harmonic K-Banhatti Index, K-Banhatti 

Somber Index, K-Banhatti Somber Reduced Index, Network Entropy, 
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Introduction 

A graph is a mathematical structure that consists of nodes (or vertices) and edges. The nodes represent 

entities or points, and the edges represent the relationships or connections between them. Graphs can be 

both directed or undirected Graph is widely used inside the analysis and design of communication 

networks, which includes computer networks, social networks, and transportation networks. It allows 

optimize the drift of facts, have a look at connectivity styles, and layout green conversation structures. 

Graphs are used to model and resolve troubles in operations research, logistics, and optimization. They 

assist discover the maximum efficient paths, allocate sources, and optimize procedures in numerous 

industries. Graphs are employed to version biological and chemical systems, along with molecular 

structures and protein interactions (Mathew et al., 2021). A chemical graph is a graphical representation 

of a chemical compound, illustrating its molecular structure in a simplified and visual manner. In a 

chemical graph, atoms are represented as nodes or vertices, and chemical bonds between atoms are 

depicted as edges or lines connecting these nodes (Trinajstic, 1992 ).  A silicate community refers to a 

three-dimensional structure composed of silicon (Si), oxygen (O), and other factors, generally forming a 

network of interconnected tetrahedral. Silicates are a big and numerous organization of minerals that make 

up a big part of the Earth's crust. The basic building block of silicate minerals is the silicon-oxygen 

tetrahedron, in which a silicon atom is surrounded via 4 oxygen atoms. Silicate minerals, forming silicate 

networks, are the maximum considerable minerals inside the Earth's crust (Morrison et al., 2024). They 

constitute a first-rate part of rocks, soils, and minerals, influencing the geology and composition of the 

Earth's surface. Silicate networks exhibit various systems, ranging from simple structures in minerals like 

olivine to complicated frameworks in minerals like quartz or feldspar. This structural variety contributes 

to the huge range of physical and chemical properties found in silicate minerals. Silicate minerals play an 

essential function in geological procedures together with weathering, erosion, and the formation of soils. 

The breakdown of silicate minerals contributes to the cycling of elements and the development of 

landscapes (Muñoz et al., 2024). Silicates are created through the fusion of metal oxides or metal 

carbonates with sand. The representation of a silicate network is denoted by SLk, where the value of n 

corresponds to the count of hexagons located between the central point and the outer boundary of SLk. 

These are class of Silicate Networks: Ortho Silicate, Pyro Silicate, Chain Silicate, Cyclic Silicate, Sheet 

Silicate, 2-Dimensional Silicate, Triangular Silicate & Rhombus Silicate Networks is shown in Figure 1. 

 

           (a)                                      (b)                                                       (c) 

Figure 1: A Class of Silicate Network (a) 2-Dimensional silicate Network (b) Triangular silicate 

Network (c) Rhombus silicate Network 

Topological indices are like numbers that inform us about the shape of molecules. In the context of 

chemistry and molecular structures, these indices quantify various aspects of the arrangement of atoms 

and bonds within a molecule. Topological indices may be used to predict and correlate molecular houses 

without requiring specific 3-dimensional structural information. This makes them valuable for screening 
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and prioritizing compounds in drug discovery and fabric technology. Topological indices contribute to 

QSAR studies, where the relationship between the structure of a molecule and its biological or chemical 

activity is investigated (Deviller et al., 1999). They aid in understanding how changes in molecular 

structure impact properties and activities. QSARs are predictive models that are created by applying 

statistical techniques to link the biological activity of chemicals (drugs, toxicants, and environmental 

pollutants) with characteristics that are indicative of their molecular structure and/or properties. This 

includes both desired therapeutic effect and undesirable side effects. In addition to drug discovery and 

lead optimization, QSARs are used in many other fields, such as risk assessment, toxicity prediction, and 

regulatory decisions (Dearden and John, 2003). 

Literature Review.  

The first time studied, the expanded new form of topological indices, such as the Silicate Network Graphs 

Arithmetic-Geometric Index (AG Index), SK Index, SK1 Index, and SK2 Index (Selvarani et al., 2021). 

Muhammad Javaid et al., (2017) for the first time studied For the rhombus silicate and rhombus oxide 

networks, we calculate the geometric arithmetic (GA), atom-bond connectivity (ABC), general Rancid, 

first general Zagreb, generalized Zagreb, multiplicative Zagreb, and geometric arithmetic indices. 

Furthermore, we calculate the most recent topological indices that have been constructed, including the 

enhanced Zagreb, Sanskruti, and fourth and fifth versions of ABC and GA, respectively. V. R. Kulli (2018) 

first time studied the polynomials for the first and second hyper-Revan indices of a certain family of 

networks, such as silicate networks.  I Muhammad Javaid et al, (2019) for the first time studied, the 

relationships between quantitative structure and activity (QSAR) and quantitative structure and property 

(QSPR), The rhombus silicate's Randi’s, geometric-arithmetic (GA), first general Zagreb, generalized 

Zagreb, multiplicative Zagreb, and atom-bond connectivity (ABC) indices In addition, topological indices, 

including the upgraded Zagreb and Sanskruti indices, the fifth edition of GA (GA5), and the fourth version 

of ABC (ABC4). Mondal et al (2019) for the first time studied The Zagreb index that is specific to a 

neighborhood is the neighborhood version of the forgotten topological index (FN), the neighborhood 

version of the second Zagreb index (M∗ 2), the neighborhood version of the hyper Zagreb index (HMN), 

and the modified neighborhood version of the forgotten topological index (F ∗ N). Hayat et al (2014) for 

the first time studied the ABC4 and GA5 indices for certain silicate networks. In [12], M. JAVAID el. at 

for the first time studied the M-polynomials of the oxide, silicate, and chain silicate networks. These 

polynomials are a recently developed tool that can be used to compute specific degree-based topological 

indices, including the augmented Zagreb, symmetric division, harmonic, inverse sum, and first, second, 

and second modified Zagreb’s, as well as general and reciprocal Randi’s. Mondal et al. (2019) studied the 

modified neighborhood version of the forgotten topological index, the neighborhood version of the second 

Zagreb index (𝑀*2), the neighborhood version of the hyper Zagreb index (𝐻𝑀N), the neighborhood 

version of the second Zagreb index (MN), and the neighborhood version of the second Zagreb index (𝐹N). 

Liu et al, (2017) the multiplicative Zagreb indices and sum-connectivity index for specific chemically 

significant networks, including silicate networks. Cancan et al. (2020) studied the article that calculates 

the topological indices of silicate networks using a specially devised approach called the M-polynomial. 

The Banhatti indices of different chemically interesting networks such as oxide, honeycomb, silicate, and 

chain silicate networks (Mirajkar et al., 2019, Kulli, 20218). 

Methodology 

         Topological indices provide information about the shape of molecules. Understanding the topological 

features of a compound can help predict its behavior in chemical reactions and interactions. We are calculate 

some topological indices on type of silicate networks. These indices are calculate: The definition of the 

harmonic index and by previous research on topological indices. The Harmonic K-Banhatti Index of the graph 

G was introduced by Kulli. 
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The harmonic K-Banhatti index of a graph as  

HKB (G) = ∑ (
2

d(θ) + d(φ)
)

θ,φϵG

                                                                                              (𝑖) 

The K-Banhatti Somber index of a graph as  

KBS (G) = ∑ √[d(θ)]2 + [d(φ)]2

θ,φϵG

                                                                                     (𝑖𝑖) 

The K-Banhatti Somber Reduced index of a graph as  

KBSR (G) = ∑ √[d(θ) − 1]2 + [d(φ) − 1]2

θ,φϵG

                                                                   (𝑖𝑖𝑖) 

The entropy of the molecular structure is given as  

𝐸𝑁𝑇(𝐺) = log(𝑇𝐼) −
1

𝑇𝐼
[∑ 𝑓(𝑑𝑢, 𝑑𝑣) × log(𝑑𝑢, 𝑑𝑣)]                                                   (𝑖𝑣) 

Main Results 

We Computed the Harmonic K-Banhatti, K-Banhatti Somber,  and K-Banhatti Somber Reduced, Degree-

based topological indices for various networks such as 2-Dimensional silicate, Triangular Silicate and 

Rhombus Silicate networks. 

Topological Indices results of 2-Dimensional Silicate 

Metal carbonates or oxides are combined with sand to create silicates. A silicate network is represented by 

the symbol SLk, where k is the number of hexagons that separate the network's perimeter and center.  

𝛉, 𝛗 ∈ 𝐆 (𝟔, 𝟔) (𝟔, 𝟑) (𝟑, 𝟑) 

Number of Edges 6𝑘 18𝑘2 + 6𝑘 18𝑘2 − 12𝑘 

Table 1: Edge Partitioning of 2-Dimensional Silicate Network 

Let SLk be the silicate networks. Then by using the equations (i), (ii) and (iii) 

1)  𝐻𝐾𝐵 (𝐺) = ∑ (
2

𝑑(𝜃)+𝑑(𝜑)
)𝜃,𝜑𝜖𝐺  = [

2

(6+6)
6𝑘 +

2

(6+3)
(18𝑘2 + 6𝑘) +

2

(3+3)
(18𝑘2 − 12𝑘)] 

  = 10𝑘2 − 1.67𝑘 

2) 𝐾𝐵𝑆 (𝐺) = ∑ √[𝑑(𝜃)]2 + [𝑑(𝜑)]2
𝑢,𝑣𝜖𝐺 = [√(6)2 + (6)2 6𝑘 + √(6)2 + (3)2 (18𝑘2 + 6) + 

√(3)2 + (3)2 (18𝑘2 − 12𝑘)] = 197.11𝑘2 + 18𝑘    

3). 𝐾𝐵𝑆𝑅 (𝐺) = ∑ √[𝑑(𝜃) − 1]2 + [𝑑(𝜑) − 1]2
𝜃,𝜑𝜖𝐺 = [√(6 − 1)2 + (6 − 1)2 6𝑘 + 

 √(6 − 1)2 + (3 − 1)2 (18k2 + 6𝑘) +  √(3 − 1)2 + (3 − 1)2 (18𝑘2 − 12𝑘)] = 147.84𝑘2 + 40.79𝑘 
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K HKB(G) KBS(G) KBSR(G) 

1 8.33 215.11 188.63 

2 36.66 824.44 672.94 

3 84.99 1827.99 1452.93 

4 153.32 3225.76 2528.6 

5 241.65 5017.75 3899.95 

6 349.98 7203.96 5566.98 

7 478.31 9784.39 7529.69 

8 626.64 12759.04 9788.08 

9 794.97 16127.91 12342.15 

10 983.3 19891 15191.9 

Table 2: Results of Topological Indices HKB, KBS and KBSR 

The graph for HKB(G) has the form of a quadratic curve and increases steeply as ‘k’ increases. The term of 

-1.67k has a small influence compared to 10𝑘2, resulting in the steepness of the curve changing more ask 

increases. The curve begins at a lower value and then increases faster with higher values of k. The slope of 

the KBS(G) graph is greater than that of HKB(G) and has a steeper slope which is the consequence of both 

of them having greater k^2 term coefficients. KBS’s graph increases at a faster rate than HKB’s ask increases. 

It is also worth noting that the linear term 18k raises the rate of increase of the curve when compared to 

HKB(G). The KBSR(G) graph is on the same upward trajectory with KBS(G), but is increasing at a rate 

smaller than KBS because of the smaller coefficient for the k2 term. On the other hand, the 40.79k linear term 

increases the curve at a greater rate compared to KBS(G) for smaller values of k. In summary, while all three 

formulas exhibit quadratic growth, KBS(G) has the steepest rise, followed by KBSR(G), with HKB(G) 

growing at the slowest rate. This means that for small values of k, KBSR(G) is increasing at a greater rate. 

The behavior of these formulas suggests that KBS(G) and KBSR(G) have greater sensitivity to changes in k, 

especially k is large, which is consistent with their greater coefficients. 

 

Figure 2: Comparison Graph of Topological Indices HKB, KBS and KBSR 

Entropy of  2-Dimensional Silicate 

Using equation (iv), we can compute the following 
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1) 𝐸𝑁𝑇(𝐻𝐾𝐵(SLk)) = log(𝐻𝐾𝐵(SLk)) −
1

𝐻𝐾𝐵(SLk)
[

1

3
(18𝑘2 − 12) log (

1

3
) +

2

9
 (18𝑘2 + 8𝑘) log (

2

9
) +

1

6
 (6𝑘) log (

1

6
)] 

2) 𝐸𝑁𝑇(𝐾𝐵𝑆(SLk)) = log(𝐾𝐵𝑆(SLk)) −
1

𝐾𝐵𝑆(SLk)
[√18(18𝑘2 − 12) log(√18) + √45(18𝑘2 +

8𝑘) log(√45) + √72 (6𝑘) log(√72)] 

3) 𝐸𝑁𝑇(𝐾𝐵𝑆𝑅(SLk)) = log(𝐾𝐵𝑆𝑅(SLk)) −
1

𝐾𝐵𝑆𝑅(SLk)
[√8(18𝑘2 − 12) log(√8) + √29(18𝑘2 +

8𝑘) log(√29) + √50 (6𝑘) log(√50)] 

K ENT_HKB ENT_KBS ENT_KBSR 

1 3.641977 3.150793 3.456582 

2 5.101109 4.641546 4.817165 

3 5.883579 5.530029 5.645687 

4 6.436101 6.15272 6.235741 

5 6.866069 6.630214 6.692882 

6 7.218774 7.016849 7.06565 

7 7.518039 7.341448 7.380202 

8 7.778049 7.621057 7.652204 

9 8.007969 7.866574 7.891761 

10 8.214072 8.085377 8.105772 

Table 3: Entropy Value of 2-Dimensional silicate network 

The entropy values calculated for polynomial s(2D) Silicate Networks are analyzed using the Harmonic 

k-Banhatti Index, K-Banhatti Somber Index, and K-Banhatti Somber Reduced Index of K-KBSR (k = 

1,2,…). These indices show significant growth in structural complexity and information content ask 

increases. Orthogonal Silicate Somber indices behave similarly to the other two indices, but the growth of 

ENT(KBS) and ENT(KBSR) is more pronounced ask increases. The pattern of ENT(HKB) is almost 

linear upward, indicating that relationships based on the harmonic degree contribute to the total entropy. 

The gradual increase in ENT(HKB) indicates that high-degree nodes do not have a disproportionate 

influence on the value of harmonic indices, making them more consistent across network shapes and sizes. 

Conversely, ENT(KBS) is more aggressive in change rates, with shifts indicating the dominance of 

squared degree terms. 

ENT(KBSR) reveals lower results than ENT(KBS) due to the reduced index accounting subtracting one 

degree terms of diminished high degree nodes. In smaller networks, the disparity among the entropy values 

is not significant, indicating that at lower values of k, there are little to no changes in the structure, leading 

to simpler topologies. However, when k is greater than 4, the discrepancies between entropy values 

become more distinct. The steep increase in ENT(KBS) and ENT(KBSR) suggests that larger networks 

tend to have more diverse interconnection patterns, resulting in relatively higher entropy. This highlights 

the responsiveness of Somber indices to more detailed topological alterations and changes. 
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Figure 3: Entropy comparison of 2-dimensional silicate network 

Topological Indices results of  Triangular Silicate 

Silicates are made by mixing sand with metal carbonates or oxides. The sign SLk, where n is the number of 

hexagons separating the network's center and perimeter, is used to indicate silicate networks.  

 𝜽, 𝝋 ∈
𝑮 

(𝟑, 𝟑) (𝟑, 𝟕) (𝟕, 𝟏𝟐) (𝟏𝟐, 𝟏𝟐) (𝟕, 𝟕) (𝟑, 𝟏𝟐) 

Number 

of Edges 

3 9𝑘 − 3 6𝑘 − 12 3(𝑘 − 3)(𝑘 − 2)

2
 

3(𝑘
− 1) 

6(𝑘 − 2)(𝑘 − 1)

2
 

Table 4: Edge Partitioning Triangular Silicate Network 

Let SLk be the triangular silicate networks. Then by using equation (i), (ii) and (iii), we can easily compute 

the values of KBS(G) and KBSR(G). 

1) HKB (G) = ∑ (
2

d(θ)+d(φ)
)θ,φϵG  = [

2

(3+3)
(3) +

2

(3+7)
(33 + 9(k − 4)) +

2

(7+12)
(12 + 6(k − 4)) 

+
2

(12+12)
(

3(k−3)(k−2)

2
) +

2

(7+7)
(3(k − 1)) +

2

(3+12)
(

6(k−2)(k−1)

2
)]  = 0.525k2 + 1.035k + 0.25  

2) KBS (G) = ∑ √[d(θ)]2 + [d(φ)]2
θ,φϵG = [√(3)2 + (3)2 (3) + √(3)2 + (7)2 (33 + 9(k − 4)) 

+√(7)2 + (12)2 (12 + 6(k − 4)) + √(12)2 + (12)2 (
3(k−3)(k−2)

2
) + √(7)2 + (7)2 (3(k − 1)) +

√(3)2 + (12)2 (
6(k−2)(k−1)

2
)] = 62.563795k2 − 57.007966k + 20.423756 

2) KBSR (G) = ∑ √[d(θ) − 1]2 + [d(φ) − 1]2
θ,φϵG = [√(3 − 1)2 + (3 − 1)2 (3) + 
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√(3 − 1)2 + (7 − 1)2 (33 + 9(k − 4)) + √(7 − 1)2 + (12 − 1)2 (12 + 6(k − 4)) +

√(12 − 1)2 + (12 − 1)2 (
3(k−3)(k−2)

2
) + √(7 − 1)2 + (7 − 1)2 (3(k − 1)) +

√(3 − 1)2 + (12 − 1)2 (
6(k−2)(k−1)

2
)] = 65.875543k2 − 59.739051k + 20.785384 

k HKB(G) KBS(G) KBSR(G) 

1 1.81 25.97958 26.92188 

2 4.42 156.663 164.8095 

3 8.08 412.474 434.4481 

4 12.79 793.4126 835.8379 

5 18.55 1299.479 1368.979 

6 25.36 1930.673 2033.871 

7 33.22 2686.994 2830.514 

8 42.13 3568.443 3758.908 

9 52.09 4575.019 4819.053 

10 63.1 5706.724 6010.949 

Table 5: Results of Topological Indices HKB, KBS and KBSR 

Because of the lower coefficients in the quadratic and linear terms, HKB(G) is relatively slow growing. This 

suggests that it is more appropriate for cases in which the results need to increase but at a slower pace. In 

contrast KBS(G) and KBSR(G) have a relatively faster exponential growth curve compared to HKB(G). The 

same can be said to KBSR(G) where the growth rate exceeds that of KBS(G) because of the larger coefficients 

for both the quadratics and linear terms. Both KBS(G) and KBSR(G) formulas exhibit similarities which 

indicates that those are better suited for applications which require rapid increase in results as compared to 

the other formulas and the distinction between them is negligible for the values of k in question. 

 

 

Figure 4: Comparison Graph of HKB, KBS and KBSR 
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Entropy of  Triangular Silicate 

Let SLk be the triangular silicate networks. Then entropy measure of the triangular network is  

(i) 𝐸𝑁𝑇(𝐺) = log( HKB(G)) −
1

 HKB(G)
[log (

1

3
) =

1

5
(9𝑘 − 3) log (

1

5
) +

1

12

(3(𝑘−3)(𝑘−2))

2
log (

1

12
) +

2

19
 (6𝑘 − 12) log (

2

19
) +

1

7
(3𝑘 − 3) log (

1

7
) +

2

15
(3(𝑘 − 2)(𝑘 −

1))log (
2

15
)] 

(ii) 𝐸𝑁𝑇(𝐺) = log( KBS(G)) −
1

 KBS(G)
[√18(3)log(√18) + √58(9𝑘 − 3) log(√58) +

√288
(3(𝑘−3)(𝑘−2))

2
log(√288) + √193 (6𝑘 − 12) log(√193) + √98(3𝑘 − 3) log(√98) +

√153(3(𝑘 − 2)(𝑘 − 1))log (√153)] 

(iii) 𝐸𝑁𝑇(𝐺) = log( KBSR(G)) −
1

 KBSR(G)
[√8(3)log(√8) + √40(9𝑘 − 3) log(√40) +

√242
(3(𝑘−3)(𝑘−2))

2
log(√242) + √158 (6𝑘 − 12) log(√158) + √72(3𝑘 − 3) log(√72) +

√125(3(𝑘 − 2)(𝑘 − 1))log (√125)] 

k NT_G ENT_G1 ENT_G2 

1 1.218014 1.872185 2.699068 

2 2.767197 3.021689 3.659276 

3 3.627389 3.763495 4.346577 

4 4.223793 4.312235 4.870644 

5 4.680898 4.745204 5.289619 

6 5.05179 5.102067 5.63748 

7 5.364003 5.405341 5.934484 

8 5.633662 5.668921 6.193444 

9 5.87103 5.901946 6.422926 

10 6.083047 6.110739 6.628916 

Table 6: Entropy Measures of the Triangular silicate 

The growth patterns and their sensitivities to structural changes of silicate networks can be analyzed through 

the comparison of the entropy metrics. ENT(HKB) has a more moderate growth rate as value k increases 

compared to its counterparts which means it is less sensitive to minor structural changes. This stability makes 

ENT(HKB) more ideal for analyzing networks that undergo gradual changes over a longer period. On the 

other side, ENT(KBS) has a sharper increase meaning it is more sensitive to topological changes which is 

common for complex networks with extensive branching. Therefore, this makes ENT(KBS) more useful for 

cases where small structural modifications have drastic effects on network behavior, such as in silicate 

reactive structures. ENT(KBSR) has a growth rate more aggressive than ENT(HKB) but less aggressive than 

ENT(KBS), which means it has a sensitivity ideal for networks of moderate complexity. The overwhelming 

quadratic terms that dominate ENT(KBS) and ENT(KBSR) push their entropy growth higher. Meanwhile, 

NT(G) with smaller coefficients delivers a more controlled progression. To summarize, ENT(HKB) can 

address stable network analyses, ENT(KBS) offers silicate structures with reactive environments, and 

ENT(KBSR) can tackle a network that needs both stability and reactivity. 



KJMR VOL.02 NO. 02 (2025) INVESTIGATING DEGREE-BASED.... 

   

pg. 73 
 

 

Figure 5: Entropy comparison of Triangular silicate network 

Topological Indices results of  Rhombus Silicate 

Sand is combined with metal oxides or carbonates to create silicates. Silicate networks are denoted by the 

sign SLk, where n is the number of hexagons that separate the network's perimeter and center.  

𝜽, 𝝋 ∈ 𝑮 (𝟑, 𝟑) (𝟑, 𝟔) (𝟔, 𝟔) 

Number of Edges 4𝑘 + 2 (6𝑘2 + 4𝑘 − 4) (6𝑘2 − 8𝑘 + 2) 

Table 8: Edge Partitioning of Rhombus Silicate Network 

Let SLk be the rhombus silicate networks. Then entropy measure of the triangular network is  

Let SLk be Rhombus silicate networks. Then by suing equations (i), (ii) and (iii), we can easily compute the 

topological indices 

1) HKB (G) = ∑ (
2

d(θ)+d(φ)
)θ,φϵG =

2

(3+3)
(4k + 2) +

2

(3+6)
(6k2 + 4k − 4) +

2

(6+6)
× 

 (6k2 − 8k + 2) = 2.33k2 + 0.89k + 0.11  

2) KBS (G) = ∑ √[d(θ)]2 + [d(φ)]2
θ,φϵG = √(3)2 + (3)2 (4k + 2) + √(3)2 + (6)2 × 

 (6k2 + 4k − 4) + √(6)2 + (6)2 (6k2 − 8k + 2) = 91.160912k2 − 24.078873k − 1.376972 

3) KBSR (G) = ∑ √[d(θ) − 1]2 + [d(φ) − 1]2
θ,φϵG = √(3 − 1)2 + (3 − 1)2 (4k + 2) + 

 √(3 − 1)2 + (6 − 1)2 (6k2 + 4k − 4)  + √(6 − 1)2 + (6 − 1)2 (6k2 − 8k + 2) = 74.737396k2 −
23.714175k − 1.741669 
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k HKB(G) KBS(G) KBSR(G) 

1 3.33 65.70507 49.28155 

2 11.21 315.1089 249.7796 

3 23.75 746.8346 599.7524 

4 40.95 1360.882 1099.2 

5 62.81 2157.251 1748.122 

6 89.33 3135.943 2546.52 

7 120.51 4296.956 3494.392 

8 156.35 5640.29 4591.738 

9 196.85 7165.947 5838.56 

10 242.01 8873.925 7234.856 

Table 9: Results of Topological Indices HKB, KBS and KBSR 

HKB(G) is slower in terms of growth compared to KBS(G) and KBSR(G), implying that it could be more 

appropriate for uses where the outcome should be upper-limited or maximally reached slowly.  The 

coefficients, mainly in the quadratic term, are higher, and as a consequence, KBS(G) and KBSR(G) increase 

at much faster rates. In addition, the gap between KBS(G) and KBSR(G) is minute. However, KBS(G) 

performs better and has a higher tendency to yield results than KBSR(G).  HKB(G) seems more appropriate 

where slow or controlled growth is preferred in contrast with rapid growth which KBS(G) or KBSR(G) are 

deemed preferable. 

 

Figure 6: Comparison Graph of HKB, KBS and KBSR  

Entropy of  Triangular Silicate 

Let SLk be the rhombus silicate networks. Then entropy measure of the triangular network is  

1) 𝐸𝑁𝑇(𝐻𝐾𝐵(SLk)) = log(𝐻𝐾𝐵(SLk)) −
1

𝐻𝐾𝐵(SLk)
[

1

3
(4𝑘 + 2) log (

1

3
) +

2

9
 (6𝑘2 + 4𝑘 − 4) log (

2

9
) +

1

6
 (6𝑘2 − 8𝑘 + 2) log (

1

6
)] 
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2) 𝐸𝑁𝑇(𝐾𝐵𝑆(SLk)) = log(𝐾𝐵𝑆(SLk)) −
1

𝐾𝐵𝑆(SLk)
[√18(4𝑘 + 2) log(√18) + √45(6𝑘2 + 4𝑘 −

4) log(√45) + √72 (6𝑘2 − 8𝑘 + 2) log(√72)] 

3) 𝐸𝑁𝑇(𝐾𝐵𝑆𝑅(SLk)) = log(𝐾𝐵𝑆𝑅(SLk)) −
1

𝐾𝐵𝑆𝑅(SLk)
[√8(4𝑘 + 2) log(√8) + √29(6𝑘2 + 4𝑘 −

4) log(√29) + √50 (6𝑘2 − 8𝑘 + 2) log(√50)] 

k ENT_HKB(SLk) ENT_KBS(SLk) ENT_KBSR(SLk) 

1 2.465033 2.459342 2.435644 

2 3.844729 3.847991 3.832743 

3 4.658351 4.663509 4.652626 

4 5.236134 5.241559 5.232877 

5 5.684238 5.689554 5.682181 

6 6.05025 6.055371 6.048862 

7 6.359608 6.364526 6.358629 

8 6.627507 6.632237 6.626796 

9 6.86375 6.868312 6.863224 

10 7.075029 7.079443 7.074636 

The alteration of the k values for the indexes for ENT(HKB): ENT(KBS): ENT(KBSR) has resulted in 

different ranges in their growth trends, signifying how sensitive the index values are with respect to the 

changes in the size of the network. As the k increases, ENT(HKB) grows at a more moderate pace and keeps 

increasing consistently. This indicates that the structural complexity growth in the case of the Harmonic K-

Banhatti index is proportional and uniform, thus it is not greatly affected by the changes occurring 

topologically within silicate networks.  

Its growth trend can also show the contribution from both node degrees and edge multiplicity, which makes 

it preferable for controlled systems. However, the same twirls which above mentioned sank graphically 

system do increase their growth range having shown within greatly positive range of k scale. The K-Banhatti 

Somber index is more aggressive than K-banathi and seemingly weaker than other two. It's subclass range 

does respond as effectively summoning more than double powerful ranges. This growth can be made stronger 

and still accompanied by kbs to mark where complex network structures change Mabie even reduce down to 

point form to pinpoint signposts marking great structural alterations or even make KBS pinpoint irregular 

changes hidden within metamorphic densities of network systems. 

In the same manner, ENT(KBSR) has a growth pattern similar to KBS, although it is less aggressive. The 

reduced form of the KBS index smoothens some of the changes that are carried in KBS, which suggests that 

it has some stabilizing function on the entropy fluctuations within the dense networks. Even in its moderated 

form, ENT(KBSR) is responsive to the size of the networks, which is indicative of sensitivity to the degree 

of connectivity. All in all, this comparison shows that while HKB gives an advanced access and controlled 

incremental progression of the entropy, KBS and KBSR are more responsive to shifts in architecture, 

especially KBS. These features differentiate the indices in the purposes of analysis gradual succession or 

acute forms within the silicate networks’ topology. 
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Figure 7: Entropy comparison of Rhombus silicate network 

Conclusion 

The paper presents a detailed investigation on degree-based topological indices and their application for the 

Harmonic K-Banhatti Index (HKB), K-Banhatti Somber Index (KBS) and K-Banhatti Somber Reduced 

Index (KBSR) of 2-D, Triangular, and Rhombus Silicate Networks. Our analysis shows that K-Banhatti 

indices capture the fluctuations of the topology more compared to the harmonic K-Banhatti index which 

HKB is best suited for stable network growth analyses. Overall entropy measures corroborate these findings 

stating the increased network size correlates with structural disorder increases. These results add more to the 

existing mathematical understanding of silicate networks and serves as a basis for developing further 

objectives towards studying new network forms, improving their predictive modeling of intricate materials 

systems in materials science and chemistry. 
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