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Abstract 
Milk is an essential component of human nutrition, particularly for the growth and 

cognitive development of children in undernourished populations. In Pakistan, milk 

production has more than doubled, with the country now the third-largest milk producer 

in the world. Most milk in Pakistan, however, is consumed in the form of unpackaged 

loose milk not only making hygiene an issue but logistical as well. An optimized route 

planner caters to the cost-effective and environmentally friendly delivery of dairy 

products. Vehicle routing has only played a minor role in large-scale, dimension-driven, 

and technology-defined approaches in developing traditional solutions. To address these 

limitations, sophisticated optimization methods like metaheuristics, machine learning, and 

deep reinforcement learning (DRL), are studied. In this paper, we proposed a DRL-based 

delivery model that optimizes routes of dairy products in both capacity and time windows 

constraint using Proximal Policy Optimization (PPO). By integrating vehicle, customer, 

and global states, the framework makes informed decisions while satisfying constraints 

including vehicle capacity and delivery deadlines. We analyze performance measurements 

such as total route length, inter-customer gaps, time constraints, and capacity utilization to 

assess efficiency. Experimental results demonstrate that the DRL-PPO model 

significantly outperforms traditional benchmarks such as Deep Q-Network (DQN) and 

Advantage Actor-Critic (A2C). Specifically, DRL-PPO yielded advantages in several key 

areas: it achieved reduced route lengths, shorter delivery times, minimized inter-customer 

gaps, increased vehicle capacity utilization, and higher success rates across varying levels 

of task complexity. These findings indicate the potential of Deep Reinforcement Learning 

(DRL)-based optimization methods to effectively address logistical inefficiencies 

prevalent in Pakistan's dairy industry. The implications of adopting DRL-PPO are 

substantial, offering cost-effective solutions that can enhance profitability while 

concurrently reducing operational expenses. By leveraging advanced machine learning 

techniques, businesses can pave the way toward sustainable logistics systems for 

perishable goods. This not only boosts overall supply chain efficiency but also ensures 

better access to high-quality dairy products for consumers. As such, the use of DRL-PPO 

represents a strategic opportunity to transform logistics practices within the dairy sector, 

leading to improved outcomes for both producers and consumers alike. 

  Keywords: Route optimization, Dairy product delivery, Deep learning, 

Reinforcement learning 
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Introduction 

Milk is very important for  human diet due to its rich components.(Pereira, 2014). It plays a very important 

role in the growth and cognitive development of children, particularly in undernourished 

populations.(Miller et al., 2022).Globally, milk production has grown substantially. Over the past few 

decades’ production of raw milk has increased from 1.9 billion litters in 2014 to 2.8 billion in 2021. 

Countries like India, the United States, Pakistan, China, and Brazil are the top milk producers, with the 

European Union leading in cow milk production (Daneshmand & Shahidi, 2023).Pakistan is the third-

largest milk producer country which produce 57 million tons milk in a year (Sattar, 2022), In Pakistan 

80% milk distribute in rural ,15% in pre urban and 5% in urban areas. In Pakistan, there is low price of 

unpacked milk as compare to packed milk (Sid, Mor, Kishore, & Sharan Agat, 2021). There exists a 

variability in the costs associated with loose milk in urban and rural areas. This discrepancy can be 

mitigated through the adaptation of route optimization strategies. 

To minimize the delivery cost route optimization is very important, it cannot be manual manage. A strong 

route optimization system reduces the cost of product and decrease the delivery time. 

In logistics, route optimization for product delivery has advanced significantly, focusing on reducing 

costs, delivery times, and fuel consumption while maximizing customer satisfaction(Arishi et al., 2022).  

In route optimization, traditional methods often use heuristics, which are particularly valuable in scenarios 

where computational resources are limited or information is incomplete. These methods expedite 

computations by focusing on a subset of the solution space, making them practical for complex 

optimization problems like the traveling salesman problem. However, heuristics do not always guarantee 

optimal solutions, leading to the exploration of more advanced techniques. Metaheuristic optimization 

methods, inspired by natural processes, have proven effective in solving Vehicle Routing Problems (VRP) 

by balancing convergence rates and diversity in solution search spaces, making them suitable for complex 

real-world engineering challenges (Xia et al., 2021). 

Modern approaches leverage machine learning algorithms like metaheuristics, reinforcement learning, and 

K-means clustering to efficiently optimize delivery routes. Linear programming models are also used to 

minimize transportation costs by optimizing distances between branches and customer locations, 

considering factors like vehicle capacity, delivery time windows, road networks, and customer demand 

(Etemadnia et al., 2015). These methods help companies streamline their delivery processes and improve 

logistics efficiency.  

This study proposed a comprehensive route optimization model that addresses both vehicle capacity and 

time window constraints. By leveraging advanced algorithms and optimization techniques, the goal is to 

streamline delivery routes, minimize travel time and costs, and ultimately enhance customer satisfaction. 

The findings from this research aim to provide actionable insights and practical solutions for dairy 

products, logistics companies handling perishable goods, contributing to improved efficiency and 

sustainability in the supply chain. 

In order to evaluate the proposed approach, this research used the comprehensive dataset collected from 

[ref]. Further, this research used key metrics: total route length, inter-customer gap, time constraints, and 

capacity constraints. Total route length reflects the overall distance traveled, while the inter-customer gap 

measures the distance between consecutive customer visits. Time constraints assess the total duration 

required for route completion, and capacity constraints represent customer demand satisfaction.  
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Literature review 

Traditional approaches in route optimization 

VRP, or Vehicle Routing Problem, is an important optimization challenge in various domains like 

Intelligent Transportation and airline operations. Traditional VRP approaches face restrictions in handling 

complex routing problems and inter-vehicle conflicts (Prins, 2004; Yeh & Tan, 2021). Therefore, to 

address these issues, innovative solutions like the Spatiotemporal VRP algorithm have been suggested, 

capable of managing large graphs efficiently and providing collision-free routes for multiple UAVs during 

infrastructure inspections. Moreover, VRP is closely related to vehicle characteristics, necessitating exact 

consideration in problem-solving (Mańdziuk, 2018). In the context of Intelligent Transportation Systems, 

distributed applications based on Vehicular Ad Hoc Networks need robust coordination mechanisms like 

the Vehicular Causal Block Protocol to ensure reliable communication and coordination among vehicles 

despite network challenges. Furthermore, VRP has been also used in crew pairing problems within airline 

operations, where new VRP-based models have shown efficiency and effectiveness in optimizing flight 

pairings and crew costs (Campbell, 2013). 

Capacity Vehicle Routing Problems (CVRP) are addressed through numerous optimization approaches in 

logistics and transportation. One of the most used common methods is the use of algorithms like the Sweep 

algorithm and Guided Local Search (Avdoshin & Beresneva, 2019). These algorithms aim to find the most 

effective routes for delivering goods while considering capacity constraints and minimizing costs.  

VRPTW is skillfully addressed through various innovative approaches. Researchers have proposed hyper-

heuristic algorithms based on reinforcement learning. Additionally, studies have focused on utilizing 

Simulated Annealing (SA) algorithms to optimize VRPTW, achieving impressive results in minimizing 

total distance traveled and adhering to specific timetables for customer service . These approaches 

showcase the advantage of combining advanced algorithms with optimization techniques to tackle the 

complexities of VRPTW and enhance the efficiency of vehicle routing in various real-world scenarios. 

The study(Guo & Wang, 2023) investigates a previously neglected aspect of the vehicle routing problem 

with concurrent pickup and delivery considering the total number of collected goods. Based on the 

postulates of considering the number of collected goods, a bi-objective vehicle routing model decreasing 

the total travel time and maximizing the total number of collected goods simultaneously is developed. A 

polynomial time approximation algorithm based on the ε-constraint method is designed to address this 

problem, and the approximation ratio of the algorithm is examined. 

The research  (Lai et al., 2022) proposed a heuristic backbone-based origin-destination insertion algorithm 

for vehicle route optimization in a data-driven flexible transit system, enhancing delivery ratio and 

reducing passenger waiting time.  

Metaheuristic optimization methods, such as the Artificial Hummingbird Optimization Algorithm 

(AHA) (Yang et al., 2023), Search and Rescue Algorithm (SAR) , and spider colony simulation 

optimizer  (Xia et al., 2021), have proven to be highly effective in optimizing routes compared to classical 

and heuristic algorithms. These metaheuristic algorithms are inspired by natural processes and excel in 

exploring complex search spaces to identify global optima, making them particularly suitable for real-

world engineering problems where mathematical models may be challenging to map out. Metaheuristic 

algorithms have been largely utilized in various domains like engineering, finance, and computer science 

due to their ability to provide superior solutions by balancing merging rates and solution search space 

diverseness (Agrawal et al., 2021).  

Traditional approaches in route optimization face several limitations. Firstly, traditional optimization 

techniques lack robustness, requiring a change in algorithms whenever the problem changes, leading to 
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ineffectiveness (Kilby et al., 2000). Therefore, the rigid and static nature of traditional approaches hinders 

adaptability and real-time responsiveness in route optimization tasks, necessitating the exploration of more 

flexible and dynamic solutions to address these limitations. 

2.1  Advanced approaches in route optimization 

Advanced approaches in route optimization involve the integration of machine learning and operational 

research algorithms to enhance solution quality. One such approach, "Learning to Guide Local Search" 

(L2GLS), combines reinforcement learning with penalty terms to adaptively adjust search efforts, 

effectively escaping local optima and achieving state-of-the-art results in larger Traveling Salesman 

Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) instances(Sultana et al., 2021). 

Additionally, the field of Combinatorial Optimization offers a generalized framework for formulating hard 

combinatorial optimization problems as linear programs, demonstrating advancements in solving NP-

complete problems directly without reduction, thus contributing to the theory and application of extended 

formulations(Sánchez et al., 2020). Furthermore, optimization frameworks utilizing Evolutionary 

Computation aid in setting optimal routing weights for network protocols, supporting complex network 

planning tasks and enhancing service quality through multi-objective optimization approaches (Sánchez 

et al., 2020). These approaches collectively showcase the progress in leveraging diverse methodologies to 

address routing optimization challenges effectively.  

Geographic Information Systems (GIS) play a Vitol role in route optimization by enabling the analysis of 

geospatial data for efficient planning and decision-making in transportation systems (Tao, 2013). GIS 

technology allows for the collection, processing, and utilization of geographic location factors to optimize 

routing paths, minimize delays, and enhance the overall efficiency of transportation networks (Abousaeidi 

et al., 2016).  

The research conducted by (Deshmukh et al., 2019) centered around Geographic Information Systems and 

remote sensing aid in optimizing routes by utilizing satellite data for shortest and optimal paths, reducing 

travel time and fuel consumption in transportation planning. Geographic Information Systems (GIS) and 

remote sensing play pivotal roles in route optimization by providing essential data for efficient planning 

and decision-making processes. GIS enables the analysis of geospatial and non-spatial data, aiding in 

managing complex transportation networks (Deshmukh et al., 2019). Remote sensing technology, coupled 

with GIS, allows for the collection of valuable spatial data from satellites, enhancing the accuracy of route 

planning and optimization (Ouellette & Getinet, 2016). By utilizing GIS, transportation systems can 

benefit from network analysis to determine optimal routes, shortest paths, and closest facilities, ultimately 

reducing travel time and costs (Abousaeidi et al., 2016). 

In (Hassine et al., 2023)the researchers use machine learning approach for solution and they use two 

algorithms first algorithms use K-means method for customers and second find the optimal delivery route. 

Route optimization using machine learning involves leveraging advanced algorithms to enhance 

traditional approaches for solving complex optimization problems in various domains(Tiwari & Sharma, 

2023).  

The authors emphasized a novel approach in the context of an artificial neural network to predict the fuel 

consumption according to the weather environment and the optimal route was determined through a 

genetic algorithm, which was confirmed to be a useful method for determining the optimal path (Jong-

Kyu, et al). 

Route optimization using AI involves leveraging advanced technologies like machine learning and deep 

learning to find the most efficient and cost-effective routes for vehicles. Various methods have been 

proposed, such as reinforcement learning combined with nonparametric clustering and Dijkstra's 

algorithm , deep neural networks with weighting methods like Ratio estimation and Rank sum method , 
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and the development of a new machine learning method for optimal route determination(Migel et al., 

2024). For Electric Vehicles (EVs), optimization algorithms consider factors like energy consumption, 

battery choice, and topography, utilizing metaheuristic algorithms like the Artificial Hummingbird 

Algorithm (AHA) for energy-efficient route planning (Lokhannadh et al., 2023).  

Research methodology 

3.1  Research Design 

The proposed methodology is based on the Deep Reinforcement Learning (DRL) which is considered to 

be the state-of-the-art in the VRP. Therefore, this research proposed a modified version of DRL. 

 DRL is a branch of Machine Learning (ML) the combination of Reinforcement Learning (RL) and Deep 

Learning (DL). RL involves an agent learning to act in a way that maximizes a reward, while DL is a kind 

of machine learning which uses multi-layered neural networks to learn complex patterns in data. 

In DRL, the agent uses a deep multi-layered neural network to estimate the value function or policy, 

allowing it to learn complex behaviors and make decisions in multi-dimensional state and action spaces. 

In figure 1 explain all the process.  

 

Figure 3.1: Loop recurring in reinforcement learning algorithms 

 

3.2  Objective 

The goal is to minimize the travel time or distance for a vehicles to service customers, minimizing travel 

distance or time while respecting vehicle capacity and customer time window constraints with capacity 

and time limits. All vehicles start and end at a central depot. Key constraints include not exceeding vehicle 

capacity, visiting customers within their time windows, and minimizing total travel distance or time. 

The goal is to minimize the total travel distance or time while respecting vehicle capacity and customer 

time windows. All the above scenario we represent in mathematically in Equation 1. 

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗   . 𝑥𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

   … … … … … … … … … … … … … … … .. (1) 

In the Equation1,N is the total number of customers and depot locations, dij is the distance or time between 

location i and location j and xij = 1 if vehicle travels from location i to location j otherwise xij = 0 

In capacity constraint the total demand served by a vehicle should not exceed its capacity. We formulate 

it in Equation 2. 
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∑ 𝑞𝑗  . 𝑥𝑖𝑗  ≤
𝑁

𝑗=1
 Ck∀k……………………………………………………. (2)   

In Equation 2,qjis the Demond of customer j and  Ckis the capacity of the vehicle k. 

In time window constraint each customer must be visited within their specific time window. This 

constraint is mathematically formulated in Equation 3. 

αj≤ tj≤bj∀j.. ………………………………………………… …………(3) 

In Equation 3, αj and bj  are the start and end times of the time window for customers j and tj is the actual 

arrival time at customer j. 

Each vehicle must leave a location it arrives at, except for the depot. The vehicle location mathematically 

formulates in Equation 4. 

∑ 𝑥𝑖𝑗

𝑁

𝑖=1
= ∑ 𝑥𝑗𝑘

𝑁

𝑘=1
∀j……………………..…………………..(4) 

3.3 Environment 

Vehicle states, customer states, and a global state are the part of the environment. Vehicle states include 

the location, time and the left amount of capacity. Customer states include remaining demand, service 

status and time windows. This comprehensive view informs the decision-making process. The 

environment mathematically we show as under. 

The above statement the vehicle state (sv) = {location, remaining capacity, current time}, the Customer 

state (sc) = {remaining demand, time window, service status} and Global state (S) = {current routes, 

remaining customers, elapsed time} 

3.4 Action 

Actions involve choosing the next customer for each vehicle, with the option to return to the depot if no 

feasible customer is available within constraints. The action procedure mathematically formulated in 

Equation 5.  

The action αt at time step t involves selecting the next customer or returning to depot. 

αt = arg    max      π(st )……………………………………………………..( 5) 

  

In Equation5,π(st ) is the policy network output giving the probability of choosing each customer ϲ  or 

returning to the depot. 

3.5 Reward Function 

The reward function offers positive rewards for serving customers and negative rewards for travel costs 

or distances. Penalties are applied for exceeding time windows or exceeding capacity, ensuring adherence 

to constraints. The reward function we write mathematically in Equation 6. 
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The reward rt at time step t is designed to encourage serving customers and penalize distance, time and 

constraint violations. 

𝑟𝑡 = ∑𝑁
𝑖=1 𝑅serve . yij -𝜆 ∑ 𝑑𝑖𝑗 . 𝑥𝑖𝑗

𝑁
𝑖=1   - µ . penalties…………………………..( 6) 

In Equation6, Rserve is the positive reward for serving a customer, 𝝀 is a penalty factor for distance or time and 

µ is a penalty factor for constraint violations 

3.6 Algorithm 

Proximal Policy Optimization (PPO) is employed for its stability and effectiveness in handling complex 

environments. PPO provides a robust framework for training the Deep Reinforcement Learning (DRL) 

agent. 

Using PPO, the agent updates its policy 𝝅𝜽and value function 𝑽𝝓based on the experience stored in replay 

buffer.The algorithm instructions mathematically formulated in Equation 7. 

Max Et [min (rt(𝜃)�̂�t,clip (rt (𝜃) 1 - ϵ, 1 +ϵ) �̂�t)]………………………………( 7) 

In Equation 7, thert(𝜽)is the probability ratio under the new and old policies , �̂�tis the advantages function 

at time t and ϵ is a small hyperparameter for clipping. 

3.7 Agent 

The DRL agent consists of a policy network, value network, and experience replay buffer. The policy 

network outputs probabilities for selecting the next customer, the value network estimates the expected 

return from the current state, and the experience replay buffer stores past experiences to stabilize training. 

3.8 Training Process 

The training process starts by initializing the environment at the beginning of each episode. During each 

step, the policy network selects the next customer based on the current state. The action is executed, and 

the next state and reward are observed. The (state, action, reward, next state) tuple is stored in the replay 

buffer. This iterative process allows the agent to learn and improve its performance in optimizing vehicle 

routes under given constraints. 

Using proximal Policy Optimization (PPO) the agent updates its policy 𝝅𝜽and value function 𝑽𝝓based on 

the experience stored in replay buffer. In training processes the agent follow the algorithm instructions so, 

It will also mathematically formulate in the Equation 8. 

Max Et [min (rt(𝜃)�̂�t, Clip (rt(𝜃) 1 - ϵ, 1 +ϵ) �̂�t)]…………………………………( 8) 

In Equation8, thert(𝜽)is the probability ratio under the new and old policies , �̂�tis the advantages function 

at time t and ϵ is a small hyperparameter for clipping. 

NUMERICAL RESULTS 

We compare our proposed DRL-PPO algorithm with two prominent DRL benchmark algorithms: 

Advantage Actor-Critic (A2C) and Deep Q-Network (DQN). DQN, a value-based DRL algorithm, 

approximates optimal Q-values to make vehicle routing decisions while optimizing costs and adhering to 

constraints such as delivery time and vehicle capacity. In contrast, A2C employs a hybrid approach with 
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separate networks for policy (actor) and value estimation (critic), enhancing decision-making efficiency 

in dynamic and constrained routing scenarios. 

The performance evaluation focuses on key metrics: total route length, inter-customer gap, time 

constraints, and capacity constraints. Total route length reflects the overall distance traveled, while the 

inter-customer gap measures the distance between consecutive customer visits. Time constraints assess 

the total duration required for route completion, and capacity constraints represent customer demand 

satisfaction.  

This comprehensive analysis provides a detailed understanding of each algorithm's performance across 

these critical parameters. 

4.1 Experimental Results 

This section provides a detailed analysis of the experimental results to evaluate the routing and delivery 

efficiency of A2C, DQN, and DRL-PPO.  

 

Fig. 1 Cumulative Rewards vs No. of Episodes 

Fig. 1 showcases the performance comparison of the proposed DRL-PPO algorithm with DRL-based 

benchmarks, A2C and DQN, across training episodes. The results highlight the superior performance of 

DRL-PPO in terms of cumulative reward, underscoring its effectiveness in learning and implementing 

optimal delivery strategies. This notable performance advantage positions DRL-PPO as a promising 

solution for challenges in the Pakistani dairy sector, such as high delivery costs and inefficiencies. By 

optimizing delivery routes, DRL-PPO can significantly reduce delivery times, fuel consumption, and 

overall operational expenses, contributing to enhanced profitability for the dairy industry and more 

affordable milk prices for consumers. 
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Fig. 2  Total Route Length 

Fig. 2 illustrates the total route length (in kilometers) traveled by a delivery vehicle under different routing 

strategies learned by A2C, DQN, and DRL-PPO. Among these algorithms, DRL-PPO demonstrates the 

most efficient performance, achieving the shortest route length of approximately 150 km, indicating its 

effectiveness in minimizing travel distances. In contrast, A2C and DQN yield longer routes, measuring 

around 170 km and 180 km, respectively, reflecting their relatively less efficient exploration and decision-

making capabilities. This comparison highlights the superiority of DRL-PPO in optimizing vehicle 

routing, making it the most suitable approach for scenarios requiring reduced travel distances and 

improved route efficiency. 

 

 

Fig. 3 Gap Between Customers 

 Fig. 3  presents the cumulative distances (kms) between consecutive customer visits for the routing 

strategies learned by A2C, DQN, and DRL-PPO. Among the algorithms, DRL-PPO demonstrates the most 

optimized transitions, achieving a reduced cumulative gap of approximately 50 km, indicating smoother 

and more efficient sequencing of deliveries. In comparison, A2C and DQN result in larger cumulative 



KJMR VOL.02 NO. 02 (2025) COST EFFECTIVE ROUTE … 

   

pg. 22 
 

gaps of approximately 60 km and 70 km, respectively, reflecting less efficient transitions between 

customers. This analysis highlights the effectiveness of DRL-PPO in minimizing inter-customer gaps, 

leading to shorter overall routes and improved delivery efficiency. 

 

Fig. 4 Capacity Utilization 

Fig. 4  compares the fraction of vehicle capacity utilized during deliveries for A2C, DQN, and DRL-

PPO. Our proposed algorithm DRL-PPO achieves the highest capacity utilization at approximately 90%, 

demonstrating superior management of delivery constraints while maximizing resource usage. A2C 

follows with a utilization of about 85%, and DQN exhibits the lowest utilization at approximately 80%. 

The enhanced performance of DRL-PPO highlights its ability to optimize vehicle loading, which is 

crucial for ensuring cost-effective and efficient logistics operations. 

Fig. 5 Time Elapsed 
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Fig. 5 illustrates the total time taken to complete the delivery route for each algorithm. DRL-PPO achieves 

the shortest completion time of 200 units, showcasing its efficiency in identifying time-optimal routes. In 

contrast, A2C and DQN require 220 and 230 units, respectively, indicating longer route completion times 

due to less effective policy learning. The results emphasize DRL-PPO's superiority in minimizing delivery 

time, which is critical for time-sensitive operations. 

 

Fig. 6 Impact of Task Complexity on Route Length 

Fig. 6 illustrates the relationship between the total route length and the number of customers for three 

algorithms: DRL-PPO, A2C, and DQN. As the number of customers increases, the total route length 

consistently grows for all algorithms, reflecting the inherent complexity of solving vehicle routing 

problems with a larger customer base. Notably, DRL-PPO consistently achieves shorter route lengths 

compared to A2C and DQN, highlighting its superior optimization capabilities. The linear growth pattern 

across all methods suggests that DRL-PPO is more efficient in handling task complexity, whereas DQN 

exhibits the highest route lengths, underscoring its relative inefficiency. The results showcase DRL-PPO's 

ability to minimize travel distance while maintaining operational efficiency 

Fig. 7 Impact of Task Complexity on Success Rate 
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Fig. 7 depicts the success rate of the algorithms against the number of customers, defined as the percentage 

of tasks completed within given constraints (e.g., time and capacity). DRL-PPO exhibits the highest 

success rates across all complexity levels, starting at 100% and declining gradually to 71% as the number 

of customers increases. A2C follows with moderate performance, while DQN shows the steepest decline 

in success rates, dropping to 60% for 25 customers. This outcome suggests that DRL-PPO is more robust 

in adapting to increasing task complexity, maintaining higher efficiency in constraint satisfaction. The 

performance gap between the algorithms widens with a growing number of customers, emphasizing DRL-

PPO's superior scalability. 

Conclusion 

This study clarifies the effectiveness of advanced route optimization techniques, particularly Deep 

Reinforcement Learning (DRL) using Proximal Policy Optimization (PPO), in reducing logistical 

challenges related to the distribution of dairy products. The suggested framework significantly reduces 

delivery costs, travel distances, and total time while making the best use of vehicle capacity by taking into 

account constraints such vehicle capacity, delivery windows, and customer demand. The empirical results 

demonstrate the model's ability to improve operational efficiencies in Pakistan's dairy industry and 

validate its superiority over traditional techniques like Deep Q-Network (DQN) and Advantage Actor-

Critic (A2C). By lowering fuel usage and carbon emissions, DRL-PPO not only improves operational 

effectiveness but also promotes sustainability. Both the dairy industry and consumers gain from these 

advancements since they make it easier to distribute dairy products in a more cost-effective and hygienic 

manner. 
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