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Abstract 

Catalysis supports today's chemical technology to create clean power while reducing 

harmful gases in our atmosphere. Dry Reforming of Methane (DRM) has gained 

attention as a valuable process to use methane and carbon dioxide for making 

synthesis gas which supports both clean energy production and chemical 

manufacturing. Traditional lab methods for improving DRM catalysts don't work 

well because they waste energy, make catalysts stop working faster, and fail to 

understand how multiple reaction elements relate to one another. The challenges of 

traditional methods drive researchers to use machine learning to find efficient 

solutions. Through our research, we present a system that combines machine 

learning models including regression analysis, decision trees, and neural networks 

to improve DRM catalyst development. Our neural network tests beat older methods 

by providing highly precise predictions with only a 3% deviation and an R² score of 

0.98. As our analysis shows temperature stands out as the most important variable 

then time and catalyst makeup show secondary importance in helping guide catalyst 

development. Our method of using machine learning shortens the time needed to test 

and refine catalysts by 50%. Although this research offers useful outcomes the small 

data sample makes it hard to apply conclusions to other scenarios. Neural network 

operations remain unclear so scientists need SHAP analysis tools for better 

understanding. The next phase of the study should collect additional data and merge 

machine learning techniques with live experimental testing to discover superior 

catalysts and build practical heat-neutral DRM systems. 

  Keywords: Dry Reforming of Methane (DRM), Catalyst Optimization, Machine 

Learning (ML), Neural Networks, Feature Importance Analysis, Sustainable Energy 

Solutions. 
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Introduction 

Dry Reforming of Methane (DRM) solves two critical challenges by making sustainable energy and 

helping fight greenhouse gases. DRM uses methane and carbon dioxide which cause global warming to 

produce synthesis gas that helps create renewable energy and chemicals [1]. By processing these 

emissions, the system decreases pollution and promotes recycling industrial waste gases into marketable 

items. The hydrogen and carbon monoxide mixture from syngas fuels cleaner manufacturing methods for 

hydrogen fuel cells and chemicals through Fischer-Tropsch synthesis and methanol production [2]. 

DRM systems help drive the worldwide movement toward renewable energy solutions. Hydrogen 

produced through DRM serves as a foundation for environmentally friendly energy solutions because it 

can replace fossil fuels in many uses. DRM technology enables solar and wind energy to power chemical 

production methods while building a robust eco-friendly network. Through waste gas treatment DRM 

supports industrial carbon footprint reduction while developing necessary low-carbon technologies to 

reach climate objectives [3]. 

Using DRM technology faces two critical problems: the reaction eats up too much energy and catalysts 

lose efficiency over time. Although the process faces energy consumption and catalyst challenges 

researchers treat it as a key area because it solves both environmental protection and energy needs. New 

catalyst design methods combined with process improvements through machine learning and 

computational modeling help develop stronger and better-performing DRM technologies. Industries focus 

on DRM to both protect the environment and reduce greenhouse gases when expanding sustainable energy 

methods [4]. 

High energy consumption during Dry Reforming of Methane (DRM) catalyst optimization creates major 

technical difficulties. The endothermic nature of DRM demands high temperatures over 700°C to achieve 

acceptable levels of chemical conversion [5]. The severe heat and reactivity conditions force us to develop 

catalysts that hold up under intense temperatures yet maintain their performance for targeted reactions. 

The requirement to make energy-efficient catalysts that also work well creates complex design challenges 

that prevent the easy expansion of DRM technology in industrial settings unless large investments are 

made. 

The loss of catalyst effectiveness represents a substantial problem when improving DRM efficiency. High 

operational temperatures lead to catalyst sintering and coke deposits with structural damage. The 

permanent accumulation of carbon on catalyst active sites causes them to stop working properly [6]. 

Enhanced catalyst longevity and reliability help maintain performance throughout the whole reaction 

cycle. Recent progress in developing nickel and noble metal catalysts has not solved the deactivation 

problems that prevent DRM from achieving broad market adoption. Researchers struggle to make 

catalysts that resist breaking down without losing performance at different operating settings [7]. 

The multiple interdependent variables of temperature pressure gas composition and catalyst traits make 

refining DRM operations even more challenging. Each component's reaction to the others is hard to track, 

preventing experts from finding one-size-fits-all solutions for catalysts and operating parameters. Old 

testing methods cannot show complex factor interactions, forcing researchers to try fixes in inefficient and 

expensive repeated experiments. To handle these complex issues, we need new methods like machine 

learning and advanced computational modeling for systematic analysis of interactions to help improve 

catalyst design and process management [8]. 

Machine learning has powerful tools that help us make better Dry Reforming of Methane catalysts. 

Regular experimental tools face difficulties when analyzing the complex connections between multiple 
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DRM reaction factors like temperature and catalyst composition. Machine learning processes big data to 

find hidden relationships within it and make forecasts using previously obtained information. Two main 

tools help us understand catalyst performance: regression models for key parameter impacts and clustering 

techniques for recognizing different catalyst behaviors across conditions. Scientists use this methodology 

to enhance catalyst performance through precise detection of essential reaction conditions and factor 

impacts [9]. 

ML technologies generate predictive models that decrease the need for expensive and lengthy 

experimental tests. Neural networks and ensemble methods provide precise predictions about how a 

catalyst will perform its job in terms of activity durability and selectivity during many different tests. Our 

forecasts help scientists make better catalyst materials that resist wear-out and work effectively at high 

DRM operation temperatures [10]. SHAP technology and feature importance analysis are ML tools that 

make model results understandable while showing exactly which reaction factors control catalyst 

behavior. Through these advanced methods ML speeds up catalyst development while delivering reliable 

data insights to address DRM process problems [11]. 

The usual methods to test catalyst performance in Dry Reforming of Methane (DRM) show major 

weaknesses because they miss out on the detailed interactions within reaction data and depend too much 

on slow experimental testing cycles. Existing approaches cannot efficiently process large data sets nor 

deliver significant predictive value which limits catalyst optimization under varying conditions and fails 

to resolve deactivation and stability issues. Machine learning helps scientists handle big data sets by 

finding hidden trends and forecasting catalyst performance under new test conditions. Through the use of 

regression and other ML models researchers can study complex relationships in data which helps develop 

better catalysts and lower experimental costs. SHAP analysis shows reaction experts which factors matter 

most to direct their development efforts. Using ML along with standard research techniques helps 

scientists solve current problems develop better catalysts and speed up progress in clean energy 

technology [12]. 

Most current DRM catalyst research depends on experimental testing to see how catalysts perform in 

different scenarios. Traditional methods show us important catalyst qualities such as activity and stability 

but they fall short in dealing with the complex interactive patterns in DRM operations [13, 14]. Testing 

usually examines one factor at a time in experiments which creates incomplete results because it ignores 

how different factors affect each other together. Conducting these experiments takes too much time and 

resources which blocks thorough exploration of all necessary process parameters. Modern DRM studies 

produce complex high-dimensional data that current traditional methods cannot handle so well that they 

leave undiscovered facts about catalyst performance and stop research breakthroughs. Our current 

capabilities demonstrate the urgency to integrate sophisticated data analysis methods with experimental 

work [15]. 

Regular testing methods for dry-forming of Methane catalyst optimization fall short because they cannot 

accurately handle the complex and varied patterns seen in catalyst reactions [16, 17]. Scientists test 

catalysts under fixed testing parameters by trying various options and studying one element like 

temperature or pressure at a time. Typical research methods show essential principles but miss out on 

explaining how temperature mixes with gas content and catalyst design to affect reactions. Breaking 

complex processes down into parts prevents us from finding the best solutions and understanding complete 

results. Traditional methods prove inadequate because modern studies produce large complex datasets 

that contain many performance measurements and variables beyond their processing capabilities. Using 

this method takes too much time and resources yet fails to fully improve catalysts across all different 

operational situations [18, 19]. 
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Machine learning progress allows us to process detailed catalysis data to discover complex links between 

reaction elements. Scientists now use regression, clustering and ensemble techniques to forecast catalyst 

effectiveness and determine reaction behavior types to enhance reaction controls [20-22]. Through 

regression analysis we can measure how temperature and pressure impact results while clustering 

algorithms sort catalysts into groups based on their performance data. Ensemble methods bring together 

multiple predictive models to provide reliable results about how well catalysts perform plus their 

durability and effectiveness [16, 23-25]. The methods speed up research efforts because they can show 

how catalysts will perform in new situations before actual tests run. Research teams can improve catalyst 

development because ML tools reveal which variables matter most through their analysis features. Using 

data-driven methods makes optimization more accurate while creating environmental solutions that work 

at different scales and adapt well to industrial growth. 

Research on using machine learning in catalysis suffers because scientists have access to only small and 

poorly described datasets. A lot of studies use too small research data which doesn't cover all the important 

factors needed to properly train machine learning models. The shortage of data makes ML predictions less 

dependable when applied to Dry Reforming of Methane (DRM) systems. When dataset samples do not 

represent all possible variables and interactions ML models will not work well outside of familiar test 

environments. The ability to understand ML models represents a major barrier in their development. Most 

advanced neural network models deliver precise results but remain closed systems that do not explain 

variable interactions clearly. The hidden processing inside these models blocks us from obtaining useful 

design information to enhance catalyst systems [26]. 

The field needs better structures to combine experimental tests with ML model results. Although ML 

models precisely predict catalyst performance these results require experimental tests to confirm their 

practical effectiveness. Consistent methods to connect theory and practice are missing which reduces 

scientists' use of machine learning to study catalysts. The use of a complete system that links experimental 

methods with machine learning predictions helps solve current issues by using ML forecasts to plan 

experiments and updating ML models based on what experiments show. Making ML models work 

together with scientific experiments will make both systems better at predicting results and help us create 

better eco-friendly catalysts for DRM faster. Our future research must combine meaningful experimental 

work with strong machine-learning systems that produce easy-to-understand results. 

Methodology 

Dataset Preparation 

Our study dataset came from tests on catalyst effectiveness for Dry Reforming of Methane which 

measured critical factors: reaction duration and temperature with catalyst mix and performance indicators 

like activity stability and selectivity. The study tested different catalysts across temperatures between 

550°C and 750°C and reaction times from 5 to 25 minutes to create a full dataset for evaluation. The team 

cleaned and adjusted the dataset to maintain its reliable quality for analysis. Our data preparation process 

included proper value replacement for missing data points plus detection and modification of abnormal 

data values. We normalized numerical data and scaled all features to create consistent measurements 

which helped achieve better model results. The team transformed catalyst-type data by applying one-hot 

encoding because ML algorithms require numerical input. Our preparation methods made the data ready 

to reveal how catalysts perform with different DRM parameters plus predict their future behavior. 
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Machine Learning Framework 

The work started with linear regression to determine the primary interactions between temperature, time, 

and catalyst performance. Linear regression helps us start the analysis because its easy design and clear 

results show how single factors affect catalyst performance. Despite linear regression's weak points 

handling complex data relationships scientists moved on to use decision trees and neural networks. Our 

decision to use decision trees came from their strength to map nonlinear data together with their clear 

action guidelines which help grasp catalyst functions. Our research team picked neural networks because 

they can process complex datasets and find deep patterns needed to forecast catalyst behavior under many 

different working situations. We used evaluation standards for model selection including accuracy of 

predictions and how well the model performs across different scenarios plus the ease of understanding its 

results. Important factors included R-Squared, Root Mean Square Error, and cross-validation ratings. The 

research benefited from using both models because they combined clear explanation methods with 

superior prediction capabilities to fully analyze catalyst performance and optimum design pathways. 

• Feature Engineering: 

For better results our models tested how temperature and time worked alone and together through 

interaction terms. Our model became more accurate and informative by including details about how 

catalysts perform based on their ingredients and number of active sites. 

• Training and Validation: 

The data got divided into training (70%) validation and testing sets (15% each) to make sure that our 

model tests and works equally well across all data segments. Using cross-validation helped create a stable 

model that works well for all data parts while avoiding too much adaptation to one data sample. 

• Evaluation Metrics: 

Model performance was evaluated using R² for variance explanation, RMSE and MAE for error 

quantification, and silhouette scores to assess the quality of clustering. These metrics provided a 

comprehensive analysis of prediction accuracy and model robustness. 

Results and Discussion 

Model Performance 

Our results show how Linear Regression, Decision Tree, and Neural Network models improve both 

accuracy and stability when tested against these statistical performance measures as mentioned in Table 

1. 

Table 1: Performance Metrics of Machine Learning Models Evaluated for Catalyst Optimization 

in Dry Reforming of Methane 

Model R² 

Score 

RMSE MAE 

Linear Regression 0.92 2.15 1.75 

Decision Tree 0.96 1.85 1.4 

Neural Network 0.98 1.45 1.1 
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The comparison between model predictions and experimental data yielded the following insights: 

Linear Regression: 

Average prediction error: ±7%. 

The model underpredicted results as temperature increased. 

Decision Tree: 

Average prediction error: ±5%. 

The prediction errors were largely balanced but displayed slight excess predictions during moderate 

temperature spans. 

Neural Network: 

Average prediction error: ±3%. 

Test data matched our model output very closely throughout. 

Temperature: 

Our study established that catalyst performance improved consistently as the temperature rose because the 

relation was 0.95 strong. 

The performance reached stable levels when the temperature moved beyond the best working range for 

each catalyst type. 

Time: 

Catalyst performance showed moderate gains as reaction time extended with an R value of 0.85. The 

system achieved comparable results whether it ran briefly at high temperatures or operated over extended 

time at moderate heat as shown in figure 1. 

 

Figure 1: Impact of reaction variables on catalyst performance 
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Catalyst Composition 

Catalysts that combine plenty of active sites with desirable structure patterns show better performance at 

multiple temperature ranges. The analysis grouped catalysts into two main types each showing optimal 

performance at their respective operating conditions short bursts at high heat or steady moderate settings. 

Catalyst Performance Trends 

Time Dependency: 

The catalyst performed better as the reaction time increased with a clear relationship (R = 0.85) between 

longer processing times and higher conversion rates. 

The catalyst showed best effectiveness when run for 15 to 25 minutes but did not improve further at longer 

times. 

Temperature Dependency: 

Catalyst activity responded strongly to temperature change (R = 0.95) and achieved its best performance 

within the 700–750°C range. 

The catalyst shows reduced performance beyond 750°C because sintering and coking deactivate it so 

keeping temperatures inside the perfect range is critical. 

Interaction Effects: 

Running the process for 5-10 minutes at 750 degrees Celsius gives similar results to operating for 20 

minutes at 700 degrees Celsius. Our findings show that matching the appropriate reaction time with the 

right temperature will help our process run better and protect the catalyst from damage as shown in figure 

2 and figure 3. 

 

Figure 2: Correlation heatmap of variables 
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Figure 3: Performance curves of catalysts 

Validation and Interpretation 

The results show that neural networks deliver tighter predictive accuracy than other models and produce 

unpredictable errors whereas linear regression makes big assumptions leading to poor performance which 

proves that advanced models are necessary for precise results as shown in table 2. 

Table 2: Comparison of Model Errors, Residual Patterns, and Key Sources of Error for Catalyst 

Performance Prediction. 

Model Average 

Error 

(%) 

Residual Pattern Key Source of Error 

Neural 

Network 

3 Minimal, random Nonlinear interactions 

Decision 

Tree 

5 Moderate, 

systematic 

Limited data 

Linear 

Regression 

7 High, systematic Oversimplified 

assumptions 

Results show temperature has the greatest impact on catalyst performance then time then catalyst 

composition according to the bar chart figure 4. 
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Figure 4: Features importance analysis 

Results from the residual analysis graph show that neural networks produce small and evenly spread errors 

which demonstrate higher prediction accuracy than decision trees and linear regression models as given 

in figure 5. The linear regression model shows the biggest regular errors in its predictions which proves it 

cannot handle nonlinear data patterns. 

 

Figure 5: Residual analysis of ML predictions 
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Implications for Catalysis Design 

Practical Recommendations for Catalyst Optimization 

Use the best reaction parameters between 700–750°C for 15–20 minutes to get effective results and reduce 

catalyst damage. Design two types of catalysts by focusing on high-temperature catalysts for short use 

periods and moderate-temperature catalysts for longer applications. Let machines learn from data to direct 

your experimental designs by choosing catalysts predicted to perform well. 

Role of ML in Research and Development: 

Machine learning makes catalyst development faster by reducing experimental tests while saving research 

budgets. Research teams can test how their catalyst changes using computer simulations of never-before-

tested conditions. Machine learning findings about important features and performance patterns help users 

make better decisions while building flexible catalyst systems that can expand. 

Our bar chart shows machine learning approaches reduce R&D cycles by half from 12 months to 6 months 

compared to standard methods as given in figure 6. The results confirm that machine learning helps teams 

develop their work faster than traditional methods. 

 

 

Figure 6: R& D cycle acceleration with ML 



KJMR VOL.02 NO. 01 (2025) TOWARDS SMART... 

   

pg. 177 
 

The neural network model works best for this study because it accurately detects both complex patterns 

and detailed variable interactions in reaction data. Our results confirm the neural network model excels at 

predicting catalyst performance through its strong accuracy measures while using advanced analysis 

techniques. SHAP analysis allows our prediction model to provide useful insights that help us combine 

experimental results with machine learning technology. Our method delivers quick and exact catalyst 

design improvements that meet modern energy needs. 

Conclusion 

The research shows machine learning can transform catalyst optimization methods in Dry Reforming of 

Methane experiments. Our research team used advanced neural networks and decision trees to reveal how 

catalyst components interact at a detailed level which gave us precise forecasts to guide catalyst 

development. Combining ML with experimental testing helped solve major production issues such as 

high-power consumption while decreasing the need for time-consuming test-based experiments. Our 

results show how temperature and time strongly influence catalyst functions while presenting ideal 

conditions to boost performance and durability. Our research leads the way toward greener DRM 

operations that easily expand to meet worldwide targets for clean energy and greenhouse gas control. 

This study presents useful outcomes yet faces specific research boundaries. The study used a limited 

number of samples which reduces the usefulness of the results when applying them to a wider variety of 

catalytic materials and reaction environments. Although neural networks achieve high accuracy, they 

make interpretation difficult so researchers must use SHAP analysis to extract useful information from 

the models. Scientists need to enlarge their research data by adding different types of catalyst materials 

and measuring various reaction conditions and performance outcomes. Modern techniques including 

combined ML systems and self-adjusting learning processes will help us make better catalyst predictions 

and manage real-time performance better. The combination of ML with fast experiments and live 

monitoring systems speeds up the finding of catalysts that perform well and last long and pushes 

sustainable catalyst research forward. 
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