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Abstract 

In this work, we proposed a new Total Variation (TV) regularization-based model 

for additive noise removal problems using the Global Meshless Collocation 

Scheme (GMCS). This new approach not only solves the associated Partial 

Differential Equation (PDE) connected to the proposed model for the smooth 

solution regarding image restoration, and preservation of edge but also for 

minimization of the staircase effect due to which the image looks blocky. The 

experimental result demonstrates that the proposed model and meshless scheme 

seek to improve computational efficiency and noise removal accuracy in terms of 

visual efficiency and Peak-Signal-to-Noise-Ratio (PSNR) values compared to 

other traditional-based methods. 
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1. Introduction 

One of the most significant features of computer vision and image processing is image denoising. The 

focus of this study is additive noise reduction. Image denoising aims to restore the original image by 

eliminating noise from a noisy image. However, because texture, edge, and noise are high-frequency 

components, it isn't easy to detect them during the denoising process, and the denoised images may 

inevitably lose some details. One of the most critical issues these days is recovering crucial information 

from noisy images during the noise-removal process to produce high-quality images. [1]. 

The additive noise model is given by 

𝓌0 = 𝓌 + 𝜁.            (1) 

Where 𝓌: Ω ⊂ ℜ → ℜ2 represents the given true image, 𝓌0 is the noisy image with additive noise 𝜁. In 

literature, various nonlinear approaches have been utilized to tackle this problem, such as wavelet 

approaches [2, 3], adaptive smoothing [4, 5], stochastic approaches [6, 7], and anisotropic diffusion [8, 9]. 

Recently Variational approaches have also been utilized to solve such problems, for instance, see [10, 11]. 

Rudin et al. (ROF) [10] provided the first TV regularization-based model for image restoration with 

additive noise. In this model, the TV regularization term is essential for image denoising and edge 

preservation. This approach produces good outcomes in the removal of image noise while maintaining the 

quality of edges, see [12, 13]. It also presents certain undesirable features such as the staircase effect, 

reduced image contrast, and increased computing time due to its nonlinearity and non-differentiability 

[10, 14]. The main drawback of this model is that the image restoration outcome is satisfactory in terms 

of quality, but it may not be visually apparent. The authors in [10] presented an artificial time-depending 

technique for solving the associated EL-PDE of the ROF model. The efficiency of this strategy is limited 

by its strict stability constraints in the time intervals. Furthermore, the time-dependent approach calculates 

an approximation of the solution rather than the true solution. In recent times, various methodologies have 

been employed to address this challenge, resulting in favorable outcomes, for instance [16–18]. But there 

is still room for development.  

To overcome the abovementioned issue we will propose a new TV regularization-based model. 

We incorporate Weber’s law in the regularization term of the ROF model which will examine the image 

visually and solve the arising non-linear associated EL-PDE of the proposed model by the Global 

Meshless Collocation Scheme (GMCS). This suggested approach will assist minimize the staircase effect, 

preserve textures, and preserve fine features throughout the restoration process in addition to aiding with 

image denoising and edge preservation.  

In recent years, radial basis function (RBF) approaches have gained popularity in both 

approximation theory and the numerical solution of PDEs. The RBF collocation approach developed by 

Kansa [19,20], also called the Kansa method, is the most widely used RBF strategy for the latter class of 

problems. The meshless applications of the Kansa technique, which require only a set of points to 

discretize the continuous difficulty, ultimately make it so prevalent. This addition to the method's 

implementation is mainly simple, especially for issues involving g two or more dimensions and 

complex shapes. As a result, the nonlinear problem solution yields a suitable value for the shape parameter 

in addition to the coefficients in the RBF approximation [21]. The Kansa technique has demonstrated 

more effectiveness in comparison to FDM [21, 22], a pseudo-spectral method [23], and FEM [24]. For 

further information on RBF collocation schemes, see [21], [25, 26]. 

The RBF Global Meshless Collocation Scheme (GMCS) will be employed to solve the nonlinear 

PDE that arises in the suggested model. The primary goals of the suggested meshless scheme for image 

restoration are to minimize the staircase effect and preserve texture while maintaining the edges and fine 

details in the images through the use of the RBF interpolation process. The smoothness property and the 

absence of a mesh or integration procedure will yield the best restoration performance. 
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The remainder of the paper is organized as follows: Particular details regarding TV regularization, which 

is employed in the ROF model [10] for image restoration, are given in Section 2. Information about RBFs 

used to solve PDEs is also included in this section. Section 3 presents the suggested additive noise removal 

model. The related EL-PDEs for the suggested model are also included in this section. This section also 

includes the application of the Global Meshless Collocation Method (GMCM) for the numerical solution 

of the suggested model. In terms of CPU time, iterations, and the quality of the restored images, as shown 

by the PSNR, Section 4 gives the experimental results and a discussion of the suggested model and 

meshless approach in comparison to mesh-based ROF models and other meshless methods. Conclusions 

are included in Section 5. 

2. Literature Review 

2.1. TV regularization-based ROF Model for Additive Noise Removal (M1). 

In their crucial work, Rudin, Osher, and Fatemi (ROF) presented an edge-preserving image de-noising 

model with desired mathematical features [10]. The approach, which is based on total variation, was 

created specifically to remove noise and other undesired fine-scale detail from images while maintaining 

crisp discontinuities, or edges. The most basic convex Variational model is the ROF. The minimization 

of this approach is as follows, 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝓌𝔼(𝓌) = ∫ |∇𝓌|
Ω

𝑑𝔵𝑑𝔶 + 
𝜆

2
‖𝓌 − 𝓌0‖2

2,       (2) 

where    |𝓌| = √𝓌𝔵
2 + 𝓌𝔶

2. 

The first term represents the TV regularization of �̂�, whereas the second term represents the data fitting 

component. The symbol for the regularization parameter is λ. The parameter λ balances the denoising and 

smoothing of the denoised image, which are often affected by the amount of noise present. The EL-PDE 

connected with the ROF Model is as follows: 

−∇ [
∇𝓌

|∇𝓌|2+𝜀
] + 𝜆(𝓌 − 𝓌0) = 0,         (3) 

in Ω 𝑓𝑜𝑟 𝜖 > 0, (𝔵, 𝔶) ∈ ℜ, 

or 

−
𝜕

𝜕𝔵
(

𝓌𝔵

√𝓌𝔵
2+𝓌𝔶

2
) +

𝜕

𝜕𝔶
(

𝓌𝔶

√𝓌𝔵
2+𝓌𝔶

2
) + 𝜆(𝓌 − 𝓌0) = 0 𝑖𝑛 Ω,      (4) 

with 
𝜕𝓌

𝜕𝑛
= 0 on the boundary of Ω = 𝜕Ω. The time-dependent EL-PDE of equation (4) is given as follows: 

𝓌𝑡 = ∇ [
∇𝓌

|∇𝓌|2+𝜀
] + 𝜆(𝓌 − 𝓌0),           (5) 

𝑖𝑛 Ω 𝑓𝑜𝑟  𝑡 > 0, (𝔵, 𝔶) ∈ ℜ,  

or 

𝜕𝓌

𝜕𝑡
=

𝜕

𝜕𝔵
(

𝓌𝔵

√𝓌𝔵
2+𝓌𝔶

2
) +

𝜕

𝜕𝔶
(

𝓌𝔶

√𝓌𝔵
2+𝓌𝔶

2
) + 𝜆(𝓌 − 𝓌0) = 0,       (6) 
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in Ω 𝑓𝑜𝑟 𝑡 > 0, (𝔵, 𝔶) ∈ ℜ. 

For the given 𝓌(𝔵, 𝔶, 0) and also 
𝜕𝓌

𝜕𝑛
= 0 on 𝜕Ω. For further information, see [10]. 

2.2. Radial Basis Function (RBF) 

RBF interpolation of a continuous multivariate function, 𝒻(𝔵), 𝔵 ∈  Ω ⊆  𝑅𝑛, where Ω is the bounded 

domain. For 𝑁 interpolation function values {𝔶𝑗}𝑖=1
𝑁 ∈  𝑅 at the data location (which are traditionally 

called centers in the RBF concept){𝔵𝑗}𝑖=1
𝑁 ∈  𝑅𝑛, then 𝒻(𝔵) can be approximated by a linear combination 

of RBFs, namely, 

𝑆(𝓌) = ∑ Γ𝑖Π(‖𝔵 − 𝔶𝑐𝑖‖
𝑁
𝑖=1 ),         

 (7) 

where 𝜏𝑖 are unidentified coefficients that require determination. The following can be created by applying 

the collocation technique: 

𝑆(𝔵𝑖) = ∑ Γ𝑖Π(‖𝔵𝑗 − 𝔶𝑖‖) = 𝒻(𝔵𝑖),
𝑁
𝑖=1         

 (8) 

𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3,4… .𝑁.    

[
 
 
 
 
 
 
Π(‖𝔵1 − 𝔶1‖)Π(‖𝔵1 − 𝔶2‖)⋯Π(‖𝔵1 − 𝔶𝑁‖)

Π(‖𝔵2 − 𝔶1‖)Π(‖𝔵2 − 𝔶2‖) … Π(‖𝔵2 − 𝔶𝑁‖)

⋮ ⋮ ⋮ ⋮

Π(‖𝔵𝑁 − 𝔶1‖)Π(‖𝔵𝑁 − 𝔶2‖)…Π(‖𝔵𝑁 − 𝔶𝑁‖)]
 
 
 
 
 
 

[
 
 
 
 
 
 
Γ1

Γ2

⋮

Γ𝑁]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝒻(𝔵1)

𝒻(𝔵2)

⋮

𝒻(𝔵𝑁)]
 
 
 
 
 
 

.     

 (9) 

The following matrix can represent an 𝑁 × 𝑁 linear system form of the aforementioned system of linear 

equations. 

𝒜Γ = 𝒻,            (10) 

Γ = 𝒜−1𝒻,            (11) 

Where Γ = (Γ1, Γ2, Γ3 … . . Γ𝑁)𝑡, 𝒻 = (𝒻1, 𝒻2, 𝒻3, …… . 𝒻𝑁)𝑡 and 𝒜 = [Π𝑖𝑗] = (𝒜𝑖𝑗) 𝜖 ℜ
𝑁×𝑁 

𝒜𝑖𝑗 = [Π𝑖𝑗] = Π(‖𝔵𝑗 − 𝔶𝑖‖), 𝑖, 𝑗 = 1,2,3, …𝑁. With Π𝑖𝑗 = Π𝑗𝑖 . 

Put equation (11) in equation (8) the interpolation matric is given as: 

𝓌 = 𝐷𝒻.            (12) 

For further information, see [48].  

3. Proposed Model  

The Rudin-Osher-Fatemi (ROF) model [10] is a TV regularization-based model for the removal of 

additive noise problems. The model is defined as follows: 

�̂� = 𝑚𝑖𝑛𝓌𝐸(𝓌) = ℛ(𝓌) + 
𝜆

2
‖𝓌 − 𝓌0‖2

2,       

 (13) 
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where       

ℛ(𝓌) = ∫ |𝛻𝓌|
𝛺

𝑑𝔵𝑑𝔶,  where |∇𝓌| = √𝓌𝔵
2 + 𝓌𝔶

2. 

The equation (22) contains the TV regularization term denoted by ℛ(𝓌), and the second term represents 

the data fitting term. We incorporate the Weber,s law in the regularization term of the ROF model due to 

examine the image visually. The minimization functional of the new TV regularization-based model for 

additive noise removal is given below: 

�̂� = 𝑚𝑖𝑛𝓌𝔼(𝓌) = ℓ1 ∫ |∇𝓌|𝑑𝔵𝑑𝔶 + ℓ2 ∫
|∇𝓌|

𝓌
𝑑𝔵𝑑𝔶 +

𝜆

2
‖𝓌 − 𝓌0‖2

2
ΩΩ

.    (14) 

In order to visually evaluate the image, equation (14) uses Weber's law in the regularization term. The TV 

regularization component is addressed in the first part of the equation (14) and the data fitting term is 

indicated in the second part.  

This model contains three regularization parameters indicated as ℓ1, ℓ2, and 𝜆. To show an ideal balance 

between the restoration and the degree of smoothness displayed by the restored image, the regularization 

parameters are used. This new model's primary goal is to reduce noise and enhance visual efficiency by 

getting rid of additive noise. The resulting EL-PDE of equation (14) is given below: 

∇ (
∇𝓌

|∇𝓌|
) + �̃�(𝓌0 − 𝓌) = 0,          (15) 

Where,      �̃� =
𝜆𝓌

(𝓌ℓ1+ℓ2)
. 

Equation (15) can be re-written as: 

𝜕

𝜕𝔵
(

𝓌𝔵

√𝓌𝔵
2+𝓌𝔶

2
) +

𝜕

𝜕𝔶
(

𝓌𝔶

√𝓌𝔵
2+𝓌𝔶

2
) + �̃�(𝓌0 − 𝓌) = 0,       (16) 

𝑖𝑛 Ω 𝑓𝑜𝑟 𝑡 > 0 (𝔵, 𝔶)𝜖 ℜ.   

For the given 𝓌(𝔵, 𝔶, 0), and also 
𝜕𝓌

𝜕𝑛
= 0 in 𝜕Ω.  

The primary benefit of the suggested model is that it uses TV regularization and the Weberized rule to 

visually aspect the restored images, especially those with additive noise. Additive noise removal 

difficulties are addressed by this suggested model. When a proper algorithm is used, this method reduces 

the staircase effect and preserves the textures and edges. 

3.1. Proposed Meshless Method (M2) 

This subsection is concerned with the numerical solution of the EL-PDE equation (27), using the 

global meshless scheme (GMCM). In this approach, the functional of the Weberized law-based TV 

regularization-based functional is used in combination with MQ-RBF interpolation (25). The suggested 

mesh-free method intends to preserve sharp edges and textures in addition to efficiently restoring the 

image (both visually and denoising-wise) while reducing the staircase effect. Therefore, there is a 

consistent improvement in PSNR values and calculation time when using the proposed mesh-free 

technique. 
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Assume that {𝔵}𝑖=1
𝑁  be 𝑁𝑐 selected center point in a closed domain Ω ⊆ ℜ2 with RBF equation Π(𝑤) =

‖𝑤‖2 in ℜ2, i.e 𝑤 = (𝔵, 𝔶). Consequently the given known {𝔶𝑐𝑗}𝑗=1

𝑁𝑐
 𝑁𝑐 selected center points, the RBF 

interpolation is given by: 

𝒮(𝔵) = ∑ Γ𝑖Π(‖𝔵 − 𝔶𝑖‖2
𝑁
𝑖=1 ).          (17) 

By using the following interpolation condition, the coefficient of Γ𝑖 in equation (17) can be found. 

𝒮(𝔵𝑖) = 𝒻,            (18) 

Having, a group of points converging in the middle, 𝑁𝑐. The RBF interpolation is illustrated using the 

overdetermined interpolation form in the𝑁𝑐, data center. 

𝒞Γ = 𝒻,            

 (19) 

This is employed to unravel the coefficient Γ and generate, 𝑁𝑐 × 𝑁𝑐, a system of linear equations. Where, 

Γ = (Γ1, Γ2, Γ3, …… . Γ𝑁𝑐
)𝑡 and 𝒻 = (𝒻1, 𝒻2, 𝒻3, …… . 𝒻𝑁𝑐

)𝑡 describe 𝑁𝑐 × 1 order matrices. 

In equation (19), 𝒞 is denoted as the 𝑁𝑐 × 𝑁𝑐  system matrix or square interpolation and is expressed in 

the following manner:  

𝒞 = [Π𝑖𝑗] = [Π (‖𝔵𝑐𝑖 − 𝔶𝑐𝑗‖2
)]

1≤𝑖,𝑗≤𝑁𝑐

.        

 (20) 

Additionally, the matrix in equation (19) is convertible since it is positive definite which a necessary 

condition for a unique solution. Therefore  

Γ = 𝒞−1𝒻,            (21) 

Furthermore, at {𝔵𝑖}𝑖=1
𝑁  be 𝑁 evaluation data point, the RBF interpolation by using equation (17) given 

𝑁𝑐 × 𝑁 matrix 𝒟 which is written as follows: 

𝒟 = [Π𝑖𝑗] = [Π (‖𝔵𝑖 − 𝔶𝑐𝑗‖2
)]     𝑓𝑜𝑟 𝑖 = 1,2,3, ……𝑁, 𝑗 = 1,2,3…… . . 𝑁𝑐.   

 (22) 

There are 𝑁 data points as well to approximate the over-determined condition of interpolation, the matrix-

vector product is utilized to generate 𝓌, as shown below: 

𝓌 = 𝒟Γ.            (23) 

Merging equation (21) and equation (23) results in the given equation  

𝓌 = 𝒟𝐶−1𝒻,            (24) 

or 

𝓌 = 𝒮𝒻    𝑤ℎ𝑒𝑟𝑒 𝒮 = 𝒟𝒞−1.          (25) 

Which represents the evaluated solution at any point in Ω. where 𝓌 is 𝑁 × 1 order matrix. 

Since equation (16) is  
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𝜕

𝜕𝔵
(

𝓌𝔵

√𝓌𝔵
2+𝓌𝔶

2
) +

𝜕

𝜕𝔶
(

𝓌𝔶

√𝓌𝔵
2+𝓌𝔶

2
) + �̃�(𝓌0 − 𝓌) = 0,       (26) 

𝑖𝑛 Ω,
∂𝓌

∂n
= 0 𝑜𝑛 𝑡ℎ𝑒 Ω.  

The time marching EL-PDE of equation (26) is given as the following equation: 

𝑑𝓌

𝑑𝑡
=

𝜕

𝜕𝔵
(

𝓌𝔵

√𝓌𝔵
2+𝓌𝔶

2
) +

𝜕

𝜕𝔶
(

𝓌𝔶

√𝓌𝔵
2+𝓌𝔶

2
) + �̃�(𝓌0 − 𝓌),      

 (27) 

𝑖𝑛 Ω 𝑓𝑜𝑟 𝑡 > 0 (𝔵, 𝔶) 𝜖 ℜ,  

for the given 𝓌(𝔵, 𝔶, 0) with 
𝜕𝓌

𝜕𝑛
= 0 on 𝜕Ω. The equation (27) is re-written as 

𝑑𝓌

𝑑𝑡
=

(
(𝓌𝔵

2+𝓌𝔶
2)(𝓌𝔵𝔵+𝓌𝔶𝔶)−

(𝓌𝔵𝔵𝓌𝔵+2𝓌𝔵𝓌𝔶(𝓌𝔵𝓌𝔶+𝓌𝔶𝓌𝔵)+𝓌𝔶𝔶𝓌𝔶)
).

(𝓌𝔵
2+𝓌𝔶

2)
3
2

+ �̃�(𝓌0 − 𝓌).      (28) 

The implicit gradient decent scheme is applied to equation (28) we get 

𝓌(𝑛+1)−𝓌(𝑛)

𝑑𝑡
=

(

 
 

((𝓌𝔵
2)(𝑛)+(𝓌𝔶

2)
(𝑛)

)(𝓌𝔵𝔵
(𝑛)

+𝓌𝔶𝔶
(𝑛)

)−

(2𝓌𝔵
(𝑛)

𝓌𝔶
(𝑛)

(𝓌𝔵
(𝑛)

𝓌𝔶+𝓌𝔵𝓌𝔶
(𝑛)

)𝓌𝔵𝓌𝔵𝔵
(𝑛)

+𝓌𝔶𝓌𝔶𝔶
(𝑛)

)

((𝓌𝔵
2)(𝑛)+(𝓌𝔶

2)(𝑛))
3
2

)

 
 

+ �̃�(𝓌0
(0)

− 𝓌(𝑛))   (29) 

Equation (29) and equation (25) together produce a nonlinear system of equations, which the GMCS is 

used to determine. The given equation must be taken into consideration in order to solve the nonlinear 

restoration system of equations. 

 

𝐺(𝓌(𝑛))𝓌(𝑛+1) = 𝐺(𝓌(𝑛))𝓌(𝑛) + 𝑑𝑡 [((𝓌𝔵
2)(𝑛) + (𝓌𝔶

2)
(𝑛)

) (2𝓌𝔵
(𝑛)

𝓌𝔶
(𝑛)

(𝓌𝔵
(𝑛)

𝓌𝔶 +

                    𝓌𝔵𝓌𝔶
(𝑛)

) + 𝓌𝔵𝓌𝔵𝔵
(𝑛)

+ 𝓌𝔶𝓌𝔶𝔶
(𝑛)

)] + 𝐺(𝓌(𝑛))𝑑𝑡 [�̃�(𝓌0
(0)

− 𝓌(𝑛))],   (30) 

where 𝐺(𝓌) = (𝓌𝔵
2 + 𝓌𝔶

2)
3

2,𝓌𝔵 = 𝒮𝔵𝒻, 𝓌𝔶 = 𝒮𝔶𝒻, 𝓌𝔵𝔵 = 𝒮𝔵𝔵𝒻, 𝓌𝔶𝔶 = 𝒮𝔶𝔶𝒻,
𝜕𝓌

𝜕𝑛
= 𝓌𝑛 = 𝒮𝑛𝒻,

𝑎𝑛𝑑 𝒻0 = 𝒻.  

The MQ-RBF is selected for better restoration performance as a basis function in this case. The derivation 

has been done in a similar way as done in [27-29]. 

4. Result and Discussion 

This section presents numerical results that illustrate the effectiveness of our suggested technique M2. 

The outcomes of technique M1 and the acquired results are contrasted. Figure 1 displays the test images: 

"Real 1 and Artificial 1." 

In this study, it is expected that N = Nc = the size of the image, for our scheme M2, for the sake of 

comparison with scheme M1. Here, the suggested approach M2 makes use of the Multi-quadric Radial 
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Basis Function (MQ-RBF). The peak signal-to-noise ratio (PSNR) is taken into consideration in order to 

quantify the denoised image. The following formula can calculate it 

 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑀×𝑁𝑚𝑎𝑥{�̂�}2

‖�̂�−𝓌‖2 ).          (31) 

Where �̂� is the given image, 𝓌 is the restored image and  𝑀 × 𝑁 is the size of an image. 

 

Fig-1 

 
Figure 1: Test Images 

 
Figure 2:  Left to right: (a) is true image; (b) Noisy image connected with additive Gaussian noise 

of 𝑳𝟏 =  𝟑𝟕%; (c) Restored image with M1; (d) Restored image with M2. Also zoomed-in images 

for staircase effect of true, noisy, restored by M1 and M2 are given in (e), (f), (g), and (h). 

 

 
Figure 3: Left to right; (f) True image; (g) Noisy image connected with salt and pepper noise of 

𝑳𝟐 = 𝟒𝟎%; (h) Obtained by M1; (i) Obtained by M2. 
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Table: 1 PSNR values, number of iterations required for convergence, and CUP time 

comparison of Algorithm M1 and M3. 

 

Test Problem: 

In this investigation, Real1 and Artifical1  images have been taken for image restoration having additive 

Gaussian and salt and pepper noise with noise levels 𝐿1 =  37%  and 𝐿2 = 40%, respectively. The true 

images are given in Figures 2 and 3 as (a), (e) and (i) respectively while the noisy images are represented 

by (b), (f), and (j), respectively.  The mesh-based method M1 used on the ROF model produces a good 

restoration result but produces the staircase effect which is the main drawback of the M1 and ROF model. 

Also, the restoration results are also affected a bit due to the nonlinearity and non-differentiability of the 

associated EL-PDE. All these images are shown in Figures 2 and 3 as (c), (g) and (k), respectively. But 

the restoration results i.e., image denoising, preservation of edges and reduction of staircase effects 

obtained by the proposed model and meshless scheme M2  are far better than M1 due to the application 

of the new model and meshless method with applications of adaptive nature, and MQ-RBF  applied on 

them [20]. Similarity, due to the additional application of Weberized law involved in the proposed model 

makes results effective in visual representation compared to the model M1 applied on the ROF model. 

These obtained images are shown in Figures 2 and 3 as (d), (h) and (l), respectively. It can also be noticed 

from Table 1 that the PSNR values of M2 are greater than M1 which shows the best restoration 

performances of M2 over M1. Also, Table 1 indicates that the number of iterations and time required for 

convergence of M2 are less than M1 which shows the quick restoration performance of M2 due to its 

meshless applications and easy implementation in comparison to M1. 

 

5. Conclusion 

In this paper, a novel TV-based approach for removing additive noise from noisy image data is presented. 

The GMCS solves the associated EL-PDE with a new model for a smooth solution that uses the MQ-RBF 

as the basis function. This solution is adaptable and computationally easy because of the meshless and 

MQ-RBF features. In comparison to the ROF Model, the outcomes are determined based on visual quality 

and PSNR value, staircase effect minimization, and texture and edge preservation. The new model and 

corresponding meshless technique are tested on both artificial and actual images, and the outcomes are 

contrasted with those of conventional techniques and ROF models. The experimental results showed that 

the suggested model and meshless approach are significantly better at image restoration PSNR values 

(image denoising and visual efficiency due to the proposed model) and other related aspects, such as the 

preservation of blocky effects, texture, and sharp edges, the number of iterations needed for convergence, 

and the CPU time (proposed method).  

Image Size M1 M3 

PSNR Iters Time(s) PSNR Iters Time(s) 

Real1  2562  28.22  29  13.59  28.67  18  9.38 

Artifical1  2562  23.93  34  16.70  24.30  27  10.79 
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