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Abstract 

The 3D acoustic wave equation is a second-order linear hyperbolic partial differential 

equation. It is widely studied in acoustics, fluid dynamics, electromagnetism, and seismology 

within both science and engineering fields. Among the various numerical methods, the finite 

difference method is considered to be the simpler to understand and easy to implement. 

Based on the discretize schemes finite difference time domain method described by the 

explicit scheme in which spatial second order derivatives are evaluated at the previous time 

step. The solution of 3D acoustic wave equation may be required on the high-resolution 

mesh points consequently more computational resources are required. In this study parallel 

algorithm for the numerical solution of 3D acoustic wave equation is proposed and designed 

by using data parallel approach and message passing schemes. The algorithm is 

implemented on shared memory parallel system using MATLAB parallel computing mode. 

The parallel performance of the designed algorithm is analyzed on different mesh sizes and 

time steps. It is revealed that the proposed algorithm may reduce computational time up to 

3 times as compared to sequential solution algorithm. The proposed parallel algorithm 

remains more efficient on P=2,3 and 4 workers while for P>4 the efficiency of the algorithm 

drops because of the high communication time.  The results of the proposed research could 

be utilized in the large-scale simulations of 3D acoustic wave equations and may enable to 

simulate the acoustic wave pressure at more refined meshes on high performance computing 

systems.  

  Keywords: Parallel Computing, Finite Difference Time Domain (FDTD), 3D 

Acoustic Wave Equation, Numerical Simulation, MATLAB Implementation. 
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Introduction 

The second order wave equation is a linear hyperbolic type partial differential equation arises in the 

modeling and simulation of sound waves, water waves and light waves. This equation is extensively 

studied in the fields of acoustics, fluid dynamics, electromagnetism, seismology and has numerous 

applications in science and engineering (Mehra et al., 2012). In one dimensional space the wave equation 

can be used to describe the vibration of an ideal string, in 2D it can describe the vibration of an ideal drum 

or membrane, and in 3D space it is often used to model and simulate the propagation of sound waves in 

gas or liquid (Otero et al., 2020).  

The 3D acoustic wave equation models the propagation of acoustic waves in fluids, such as liquids and 

gases. An important application of this equation, three-dimensional, is in seismic exploration, widely used 

in the search for subsurface resources such as crude oil, natural gas, and minerals (Bernacki, Lanteri, et 

al., 2006) (Frances et al., 2015). The equation describes the time evolution of acoustic pressure, 𝑝 or 

particle velocity 𝑉, as functions of spatial coordinates (𝑥, 𝑦, 𝑧), and time 𝑡 (Näsholm & Holm, 2013). A 

localized change in pressure compresses the surrounding fluid, causing further pressure variations, which 

propagates as acoustic waves. This dynamic behavior is mathematically described by the 3D acoustic 

wave equation (Garcia, 2009). Typical boundary conditions, aside from absorbing boundary conditions 

that "simulate" an infinite medium by preventing reflection, include zero-velocity or zero-displacement 

conditions for rigid surfaces and stress-free conditions (Kamboh et al., 2015)  (Savioja, 2010). Such 

conditions are critical in simulating realistic situations and obtaining reasonably accurate simulations. 

Analytical solutions are available for specific, simple or idealized situations. For more complex and 

realistic cases, numerical methods must be used. These methods approximate the governing partial 

differential equations by converting them into systems of algebraic equations which can easily be 

implemented on computers. Among the most widely used numerical methods are finite difference methods 

(FDM), finite element methods (FEM), and finite volume methods (FVM). The acoustic modeling method 

choice would depend, for example, on its ability to deal with medium heterogeneity, scale and dimensions 

of the simulation domain, realistic attenuation, free-surface topography, and frequency range (Bernacki, 

Lanteri, et al., 2006). Again, computing efficiency in terms of memory usage and processing time is 

critical for practical applications. For instance, Finite difference time-domain (FDTD) methods represent 

the most common numerical approach for generation solutions of the 3D acoustic wave equation and have 

long been developed and widely implemented since the 1980s (Robertsson et al., 2012). The finite 

difference coefficients for spatial derivatives can be derived from the time-space domain dispersion 

relation (Y. Wang et al., 2014) and the Taylor series expansions can also be used (Zhang & Yao, 2012) 

(Chang & Liu, 2013). Further Kamboh (Kamboh et al., 2015) extended the Least Square-based optimal 

finite difference scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and 

developed a 3D acoustic optimal finite difference method with high efficiency, wide range of high 

accuracy and adaptability to parallel computing. A finite difference approach in the time domain using a 

combination of coordinate mapping and differential geometry by minimizing the error of the space domain 

dispersion relations is developed by (Shragge, 2014). Khokhar (Khokhar et al., 2023) investigates the 

behavior of Newtonian fluids in pipes filled with and without porous media under combing and separating 

flow configurations. To calculate the finite difference coefficients, a new 3D time-space domain finite 

difference method with minimized error of the time-space domain dispersion relation by using Taylor 

expansion was proposed by (Liu & Sen, 2009). Typically, the FDTD methods use rectangular grids 

although there are numerous other possible mesh topologies as well. For the room acoustic modeling, the 

wave-based methods and the ray-based method were studied by (Savioja, 2010). They concluded that the 

former target at solving the wave equation numerically whereas the latter neglect all the wave phenomena 

and sound act like rays. In (Kowalczyk & Van Walstijn, 2011) a method for constructing the boundary 

formulations for the general family of 3D non-staggered compact explicit FDTD schemes is proposed. 
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The first-order Mur’s boundary condition is used for free space simulation (Sheu & Li, 2008). However, 

in practice the first-order Mur’s boundary condition is poor in eliminating reflected waves from truncated 

edges and causes errors in simulation. They overcame this shortcoming by using Berenger’s perfectly 

matched layers (PMLs) to minimize the interference. The sequential simulation of 3D acoustic wave 

equations using FDTD often becomes very slow on sequential computers therefore the need of parallel 

computing resources is inevitable. In this regard, to improve the efficiency of the FDTD for 3D acoustic 

wave equation with random absorbing boundary condition (ABC) was proposed by  (Sheua & Lia, n.d.) 

(LIU et al., 2013) for the implementation on parallel graphic processing units. An explicit, time-domain, 

finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity 

wave fields on staggered spatial and temporal grids was proposed by (Garcia, 2009). The algorithm is 

designed to execute on parallel computational platforms by utilizing a classical spatial domain-

decomposition strategy. Yoon (Yoon et al., 2003) worked some recent developments would allow 3D 

reverse-time migration to be done relatively inexpensively on PC-based distributed memory clusters. The 

new technique is computationally not intensive. However, they compare reverse-time migration images 

with first-arrival Kirchhoff migration images to demonstrate that 3D reverse-time migration can produce 

high fidelity images under the PC-based distributed memory cluster machine. Many researchers 

(Saarelma, 2013)(Bernacki, Fezoui, et al., 2006; Operto et al., 2007; Vaccari et al., 2011; S. Wang et al., 

2012; Yu et al., 2005) parallel solvers based on FDTD solution of 3D acoustic equation on large clusters 

and GPU (graphics processing unit) have been proposed for the purpose of increasing the efficiency of 

the method and speedup of simulation. However, the parallel performances of explicit FDTD method have 

not been reported.  

As the size of 3D acoustic wave simulations grows, it becomes computationally infeasible to use sequential 

solvers due to the computing time and memory requirements involved. Large-scale problems of this nature 

are usually only tractable on supercomputing infrastructure or HPC systems. The parallel performance of 

the 3D acoustic wave equation has been mostly analyzed in existing literature with explicit finite-difference 

time-domain (FDTD) methods implemented on advanced hardware, such as GPUs or specially designed 

HPC systems, which are very expensive and normally not accessible to all researchers (Allen et al., 2005)(J. 

D. Sheaffer et al., 2011)(Li et al., 2022)(J. Sheaffer & Fazenda, 2010)(Morales et al., 2017). There is, 

however, now an increasing need to investigate the feasibility and efficiency issues by running these 

simulations on relatively inexpensive, commonly available computing systems. For example, a parallel 

performance benchmark of explicit FDTD methods within MATLAB on low-cost platforms would be of 

interest. MATLAB is a very intuitive language with extensive, built-in parallel computing tools that could 

be opened for easier use by researchers without access to advanced computing resources. Exploration of 

this avenue would be expected to not only increase accessibility to the carrying out of large-scale acoustic 

simulations but also advance optimized and cost-effective solutions for actual applications in real-life 

problems.   

This study presents the numerical solution of the 3D acoustic wave equation with the FDTD method. A 

parallel algorithm for the FDTD method is developed and implemented on low-cost, readily available 

shared memory systems using MATLAB. The performance of the parallel explicit FDTD implementation 

is evaluated and analyzed, with an emphasis on key metrics such as speedup and computational efficiency. 

2. Methodology:  The governing equation 3D wave propagation of an acoustic wave equation and 

mathematically described by the following linear partial differential equation (Cai et al., 2015): 
𝜕2𝑝(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡2 = 𝑐2 (
𝜕2𝑝(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥2 +
𝜕2𝑝(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦2 +
𝜕2𝑝(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧2 ),     (1) 

where the coefficient c in the equation (1) is related to the stability condition of the 3D acoustic equation 

and is defined as follows. 
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𝑐 = √𝐾/𝜌   is the speed of sound, 𝐾 = 24.42    is the coefficient of the stiffness (bulk modulus), Gpa and 

𝜌 = 2.16 (
𝑘𝑔

𝑚3
)    is the density of material, here salt is used as working material. 

2.1 Formulation of Computational Domain with the Initial and Boundary Conditions: 

In order to test and implement the methodology first the dimensions and boundary conditions are defined 

properly. The dimensions are taken from the SEG/EAGE (Society of Exploration Geophysicists (SEG), 

the European Association of Geoscientists and Engineers (EAGE), the Australian Society of Exploration 

Geophysicists) salt model (Chang & Liu, 2013; Näsholm & Holm, 2013; Yu et al., 2005). Figure 1 depicts 

the size of 13500 m × 13500 m × 4180 m which is a benchmarking model that is used to test and implement 

the proposed methodology. Whereas the absorbing boundary conditions are set by selecting an interior 

region of the domain with initial pressure field. The top of surface of the domain has naturally atmospheric 

pressure while other faces are set to zero pressure.   

 

 
Figure 1: Schematic of computational domain 

Depending upon the problem Eq. (1) is associated with the initial and boundary conditions like absorbing 

boundary conditions (for simulating an infinite medium), zero-velocity conditions equivalent to zero-

displacement conditions (Savioja, 2010). 

The boundary conditions on six faces are listed as, 

𝑝(13500, 𝑦, 𝑧, 𝑡) = 0, 𝑝(𝑥, 0, 𝑧, 𝑡) = 0, 𝑝(𝑥, 13500, 𝑧, 𝑡) = 0, 𝑝(0, 𝑦, 𝑧, 𝑡) = 0   (2) 

 

𝑝(𝑥, 𝑦, 0, 𝑡) = 0, 𝑝(𝑥, 𝑦, 4180, 𝑡) = 𝑝𝑎𝑡𝑚, 𝑝(𝑥, 𝑦, 𝑧, 0) = 0.      (3) 

 

And the source wave in the central region of the domain is chosen as follows: 

𝑝(𝑥𝑐, 𝑦𝑐, 𝑧𝑐, 0) = 10 𝑐𝑜𝑠(𝐾(𝑥𝑐 + 𝑦𝑐 + 𝑧𝑐)),        (4) 

 

3375 ≤ 𝑥𝑐 ≤ 8775,     3375 ≤ 𝑦𝑐 ≤ 8775,    1045 ≤ 𝑧𝑐 ≤ 2717.     (5) 

 

3. The Explicit Finite Difference Discretization of 3D Acoustic Wave Equation and its 

Simplification:    

The explicit FDTD representation of the model equation are obtained by approximating the derivatives of 

Eq. (1) using second order accurate finite difference schemes as follows:  

 

𝜕2𝑝

𝜕𝑡2 ≈
𝑝𝑖,𝑗,𝑘

𝑛+1−2𝑝𝑖,𝑗,𝑘
𝑛 +𝑝𝑖,𝑗,𝑘

𝑛−1

𝛥𝑡2 ,                  
𝜕2𝑝

𝜕𝑥2 ≈
𝑝𝑖+1,𝑗,𝑘

𝑛 −2𝑝𝑖,𝑗,𝑘
𝑛 +𝑝𝑖−1,𝑗,𝑘

𝑛

𝛥𝑥2 ,      (6) 
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𝜕2𝑝

𝜕𝑦2 ≈
𝑝𝑖,𝑗+1,𝑘

𝑛 −2𝑝𝑖,𝑗,𝑘
𝑛 +𝑝𝑖,𝑗−1,𝑘

𝑛

𝛥𝑦2 ,       and      
𝜕2𝑝

𝜕𝑧2 ≈
𝑝𝑖,𝑗,𝑘+1

𝑛 −2𝑝𝑖,𝑗,𝑘
𝑛 +𝑝𝑖,𝑗,𝑘−1

𝑛

𝛥𝑧2 .     (7) 

 

Thus, the explicit discretization of Eq (1) is obtained  

𝑝𝑖,𝑗,𝑘
𝑛+1−2𝑝𝑖,𝑗,𝑘

𝑛 +𝑝𝑖,𝑗,𝑘
𝑛−1

𝛥𝑡2 = 𝑐2 (

𝑝𝑖+1,𝑗,𝑘
𝑛 −2𝑝𝑖,𝑗,𝑘

𝑛 +𝑝𝑖−1,𝑗,𝑘
𝑛

𝛥𝑥2
+

𝑝𝑖,𝑗+1,𝑘
𝑛 −2𝑝𝑖,𝑗,𝑘

𝑛 +𝑝𝑖,𝑗−1,𝑘
𝑛

𝛥𝑦2
+

𝑝𝑖,𝑗,𝑘+1
𝑛 −2𝑝𝑖,𝑗,𝑘

𝑛 +𝑝𝑖,𝑗,𝑘−1
𝑛

𝛥𝑧2

),    (8) 

Equation (8) is further simplified for the solution at each interior node (𝑖, 𝑗, 𝑘) of the mesh at (𝑛 + 1)𝑡ℎ  

time step as follows:  

𝑝𝑖,𝑗,𝑘
𝑛+1 =

1

𝛥𝑥2𝛥𝑦2𝛥𝑧2 (

(2𝛥𝑥2𝛥𝑦2𝛥𝑧2 − 2𝑐2𝛥𝑡2(𝛥𝑥2𝛥𝑦2 − 𝛥𝑦2𝛥𝑧2 − 𝛥𝑥2𝛥𝑧2))𝑝𝑖,𝑗,𝑘
𝑛 +

(𝑐2𝛥𝑡2𝛥𝑦2𝛥𝑧2)(𝑝𝑖+1,𝑗,𝑘
𝑛 + 𝑝𝑖−1,𝑗,𝑘

𝑛 ) + (𝑐2𝛥𝑡2𝛥𝑥2𝛥𝑧2)(𝑝𝑖,𝑗+1,𝑘
𝑛 + 𝑝𝑖,𝑗−1,𝑘

𝑛 ) +

(𝑐2𝛥𝑡2𝛥𝑥2𝛥𝑦2)(𝑝𝑖,𝑗,𝑘+1
𝑛 + 𝑝𝑖,𝑗,𝑘−1

𝑛 ) − (𝛥𝑥2𝛥𝑦2𝛥𝑧2)𝑝𝑖,𝑗,𝑘
(𝑛−1)

),(9) 

Or equation (9) is further simplified as;   

1

𝛥𝑡2
𝑝𝑖,𝑗,𝑘

𝑛+1 + (
2𝑐2

𝛥𝑥2
+

2𝑐2

𝛥𝑦2
+

2𝑐2

𝛥𝑧2
−

2

𝛥𝑡2
) 𝑝𝑖,𝑗,𝑘

𝑛 +
1

𝛥𝑡2
𝑝𝑖,𝑗,𝑘

𝑛−1 −
𝑐2

𝛥𝑥2
𝑝𝑖+1,𝑗,𝑘

𝑛 −
𝑐2

𝛥𝑥2
𝑝𝑖−1,𝑗,𝑘

𝑛 − 

𝑐2

𝛥𝑦2 𝑝𝑖,𝑗+1,𝑘
𝑛 −

𝑐2

𝛥𝑦2 𝑝𝑖,𝑗−1,𝑘
𝑛 −

𝑐2

𝛥𝑥2 𝑝𝑖,𝑗,𝑘+1
𝑛 −

𝑐2

𝛥𝑥2 𝑝𝑖,𝑗,𝑘−1
𝑛 = 0      (10) 

above equation (10) leads to a system of linear equations AP-b=0.   

The finite difference approximation of 3D acoustic wave equation (10) is stable (S. Wang et al., 2012) iff,  

𝛥𝑡 ≤
𝑚𝑖𝑛(𝛥𝑥,𝛥𝑦,𝛥𝑧)

√2𝑐𝑚𝑎𝑥
,           (11) 

where 𝑐𝑚𝑎𝑥is the maximum wave velocity in the medium. Once the explicit finite difference scheme of 

the acoustic equation is done then the domain is discretized into a 3D mesh of octahedral elements as 

shown in Figure 2.  

 

 
Figure 2:A schematic of 3D finite difference discretization of the domain 

into𝟏𝟎𝒙𝟏𝟎𝒙𝟏𝟎 mesh. 

4. Sequential Implementation of FDTD Numerical Solution on MATLAB: 

The Equation (10) is solved iteratively by writing a sequential MATLAB code and is tested on a single 

worker of MALAB. The acoustic pressure distribution is obtained on each interior node. The simulation 

profiles on different mesh sizes are achieved in Figure 3(a-c). 
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Figure 3(a): Simulation profile of acoustic pressure 𝒑 at 𝒅𝒕 = 𝟎. 𝟏 and 𝟐𝟎𝒙𝟐𝟎𝒙𝟐𝟎 mesh 

size (𝒈𝒓 = 𝟐) 

 
Figure 3(b): Simulation profile of acoustic pressure p at 𝒅𝒕 = 𝟎. 𝟏 and 4𝟎𝒙𝟒𝟎𝒙𝟒𝟎 mesh 

size (𝒈𝒓 = 𝟒) 

 

 
Figure 3(c): Simulation profile of acoustic pressure p at 𝒅𝒕 = 𝟎. 𝟏 and 𝟓𝟎𝒙𝟓𝟎𝒙𝟓𝟎 mesh 

size (𝒈𝒓 = 𝟓) 

 



KJMR VOL.02 NO. 01 (2025) PARALLEL PERFORMANCE OF... 

   

pg. 17 
 

5. Design of Parallel Algorithms for Explicit FDTD Schemes:  

To design the parallel algorithm for the 3D acoustic wave equation based on the FDTD method the most 

straightforward approach may be the data parallel approach in which the portions of complete mesh are 

distributed among the parallel workers such that each worker computes the solution on its own data and 

finally the results are collected to every worker. In addition to distribution of the sub domains the 

dependencies are treated. For that the message passing schemes are required to share the boundaries of 

distributed domain among the parallel workers. Therefore, the distribution and message passing schemes 

related to the FDTD discretization of the domain are formulated properly. 

Let (𝑙 + 1) mesh data points lie on any axis and required to distribute among P workers then 
⌊(𝑙 + 1) 𝑃⁄ ⌋ = 𝑙2 points are assigned to all workers equally. But if 𝑟 = 𝑚𝑜𝑑( (𝑙 + 1), 𝑃) then r < P data 

points are remaining behind. Therefore, we need to find the maximum possible number of workers that 

may distribute r data points equally. Assume that there are 𝑤𝑚𝑎𝑥workers are going to utilize this data 

equally then 𝑤𝑚𝑎𝑥 must satisfy the modular expression 𝑚𝑜𝑑( 𝑟, 𝑤𝑚𝑎𝑥) = 0, where 1 ≤  𝑤𝑚𝑎𝑥 ≤ 𝑃 − 1. 

Once, 𝑤𝑚𝑎𝑥 is found the one can easily distribute rest of the data points to 𝑤𝑚𝑎𝑥workers equally. This 

states that first 𝑤𝑚𝑎𝑥workers will have 𝑙2 + 1 data points and other 𝑃 − 𝑤𝑚𝑎𝑥workers will have 𝑙2data 

points. This distribution scheme is generalized for each individual worker and described by the global 

indices of the distribution data as follows:     

  max222

max2max2max

),1)(1(1)1)(1(1

>),1()1(1

wpwhenlplilp

wpplwilpw

+−+++−+

−++−++     (12) 

where p is the index of worker and i is the global index of mesh points along the partitioned axis.  

It is also attempted to formulate schemes for sharing the neighboring boundaries among the parallel 

workers. Assume that Φ is a mapping for sending the data from 𝑝𝑡ℎ worker to its left (𝑝 − 1)𝑡ℎ or (𝑝 +
1)𝑡ℎ worker that sends the neighborhood boundary 𝑉(𝑥𝑛𝑏ℎ𝑑, 𝑦, 𝑧), 𝑥𝑛𝑏ℎ𝑑 may be the first or the last 

boundary of 𝑝𝑡ℎ worker. It can be expressed mathematically as follows: 

),,()1,( zyxVpp nbhd=− ,         (13)   

            ),,()1,( zyxVpp nbhd=− ,         (14)    

Eq. (13) and Eq. (14) are mappings for sending data to the left and the right workers respectively. The 

general for of these schemes is given below; 

           









=−

=+

+=+

PpifzyVpp

PpwifzylVpp

wpifzylVpp

<1),,,1()1,(

<<),,,()1,(

<1),,,1()1,(

max2

max2

 ,       (15) 

Similarly, assume that is the mapping for receiving the data by 𝑝𝑡ℎ worker from left (𝑝 − 1)𝑡ℎ or right 

(𝑝 + 1)𝑡ℎ worker that receives the neighborhood boundary𝑉(𝑥𝑛𝑏ℎ𝑑, 𝑦, 𝑧). It can be represented 

mathematically as given below: 

             ),,(),1( zyxVpp nbhd=− ,         (16) 

             ),,(),1( zyxVpp nbhd=− ,         (17) 

Eq. (16) and Eq. (17) are mappings for receiving data from the left and the right workers respectively. The 

general for of these schemes is given as follows, 

             









=−

+=−

=+

PpwifzylVpp

wpifzylVpp

PpifzyVpp

<),,,(),1(

2),,,1(),1(

<1),,,1(),1(

max1

max1
,      (18) 

After defining the distribution and message passing schemes the next step is to solve the acoustic equation 

on each worker W and set the error tolerance on local worker and then start the iterations until the solution 

converges to the predefined error.  

6. Parallel Implementation of the Designed Parallel Algorithms For 3D Acoustic Wave Equation: 
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After designing the parallel algorithms for the explicit FDTD methods implemented on shared memory 

systems by writing the user defined codes on MATLAB parallel computing interfaces.  

The parallel computing system was configured to maximum 16 workers on local scheduler or job manager. 

A typical view of such parallel shared memory parallel system of MATLAB is exhibited as depicted in 

Figure 4.

 

 
Figure 4: A typical view of 16 parallel workers where the parallel algorithm is 

running 

7. Performance Evaluation of Parallel Algorithm  

The performance of the designed algorithm is evaluated at different grid sizes and time step where the 

speedup and efficiency of the algorithms is analyzed. The performance metrics are defined as:  

𝑡𝑠 (𝑠𝑒𝑐) is the sequential time taken to solve the problem on single worker, 𝑡𝑝 (𝑠𝑒𝑐)  is the parallel time 

taken to solve the problem on P parallel workers, 𝑡𝑐 (𝑠𝑒𝑐)  is the communication time taken to solve the 

problem on P parallel workers, 𝑆𝑃 =  𝑡𝑠/𝑡𝑝 is the parallel speedup achieved on P parallel workers, 𝐸𝑃  =

 𝑆𝑃 /𝑃 is the parallel efficiency achieved on 𝑃 parallel workers. The designed algorithm was run on 

different workers at different grid sizes and improvement in the solution time was analyzed, which will 

be discussed in the next section. 

The performance of the parallel algorithm for the parallel solution of 3D acoustic wave equation are 

evaluated and discussed. The significant implementation results are obtained by testing the algorithm on 

different mesh sizes and the sequential time, parallel computing time, communication time, speedup and 

efficiency are recorded for each run with respect to different number of parallel workers as shown in 

Tables (1-15).  

Table 1: Parallel performance of the algorithm for 𝑮𝒓 = 𝟏 𝒅𝒕 = 𝟎. 𝟐 on different parallel workers 

Number of 

Workers, 𝑃 

Parallel 

time, 𝑡𝑝 

(sec) 

Communication 

time, 𝑡𝑐 (sec) 

Sequential 

time, 𝑡𝑠 

(sec) 

Speedup 

𝑆𝑝 =
𝑡𝑠

𝑡𝑝
 

Efficiency  

𝐸𝑝 =
𝑆𝑝

𝑃
 

𝑃 = 2 0.07000 0.00100 0.08000 1.14286 0.57143 

𝑃 = 4 0.21000 0.14000 0.08000 0.38095 0.09524 

𝑃 = 8 2.93000 2.37000 0.08000 0.02730 0.00341 
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𝑃 = 12 4.70000 3.67000 0.08000 0.01702 0.00142 

𝑃 = 16 7.16000 5.44000 0.08000 0.01117 0.00070 

 

Table 2: Parallel performance of the algorithm for 𝑮𝒓 = 𝟐 𝒅𝒕 = 𝟎. 𝟐 on different parallel workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 0.38000 0.02000 0.79000 2.07895 1.03947 

𝑷 = 𝟒 0.43000 0.15000 0.79000 1.83721 0.45930 

𝑷 = 𝟖 2.10000 1.81000 0.79000 0.37619 0.04702 

𝑷 = 𝟏𝟐 4.59000 3.99000 0.79000 0.17211 0.01434 

𝑷 = 𝟏𝟔 9.25000 7.60000 0.79000 0.08541 0.00534 

 

Table 3: Parallel performance of the algorithm for 𝑮𝒓 = 𝟑 𝒅𝒕 = 𝟎. 𝟐 on different parallel workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 1.12000 0.06000 2.80000 2.50000 1.25000 

𝑷 = 𝟒 1.15000 0.23000 2.80000 2.43478 0.60870 

𝑷 = 𝟖 3.31000 1.55000 2.80000 0.84592 0.10574 

𝑷 = 𝟏𝟐 5.50000 3.78000 2.80000 0.50909 0.04242 

𝑷 = 𝟏𝟔 11.14000 9.64000 2.80000 0.25135 0.01571 

 

Table 4: Parallel performance of the algorithm for 𝑮𝒓 = 𝟒 𝒅𝒕 = 𝟎. 𝟐 on different parallel workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 2.85000 0.07000 6.95000 2.43860 1.21930 

𝑷 = 𝟒 2.68000 0.34000 6.95000 2.59328 0.64832 

𝑷 = 𝟖 8.62000 5.51000 6.95000 0.80626 0.10078 

𝑷 = 𝟏𝟐 11.68000 6.72000 6.95000 0.59503 0.04959 

𝑷 = 𝟏𝟔 13.58000 8.95000 6.95000 0.51178 0.03199 

Table 5: Parallel performance of the algorithm for 𝑮𝒓 = 𝟓 𝒅𝒕 = 𝟎. 𝟐 on different parallel workers 
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Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communication 

time, 𝒕𝒄 (sec) 

Sequential 

time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 6.10000 0.12000 14.50000 2.37705 1.18852 

𝑷 = 𝟒 5.17000 0.34000 14.50000 2.80464 0.70116 

𝑷 = 𝟖 34.82000 12.02000 14.50000 0.41643 0.05205 

𝑷 = 𝟏𝟐 28.39000 13.77000 14.50000 0.51074 0.04256 

𝑷 = 𝟏𝟔 186.34000 156.83000 14.50000 0.07781 0.00486 

 

Table 6: Parallel performance of the algorithm for 𝑮𝒓 = 𝟏 𝒅𝒕 = 𝟎. 𝟏 on different parallel workers 

Number of 

Workers, 

𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communication 

time, 𝒕𝒄 (sec) 

Sequential 

time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 0.20000 0.02000 0.28000 1.40000 0.70000 

𝑷 = 𝟒 0.48000 0.21000 0.28000 0.58333 0.14583 

𝑷 = 𝟖 4.81000 3.67000 0.28000 0.05821 0.00728 

𝑷 = 𝟏𝟐 14.36000 8.25000 0.28000 0.01950 0.00162 

𝑷 = 𝟏𝟔 23.34000 16.06000 0.28000 0.01200 0.00075 

Table 7: Parallel performance of the algorithm for 𝑮𝒓 = 𝟐 𝒅𝒕 = 𝟎. 𝟏 on different parallel workers 

Number of 

Workers, 

𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communication 

time, 𝒕𝒄 (sec) 

Sequential 

time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 1.22000 0.09000 2.81000 2.30328 1.15164 

𝑷 = 𝟒 1.28000 0.26000 2.81000 2.19531 0.54883 

𝑷 = 𝟖 6.77000 5.53000 2.81000 0.41507 0.05188 

𝑷 = 𝟏𝟐 9.84000 7.78000 2.81000 0.28557 0.02380 

𝑷 = 𝟏𝟔 15.09000 11.88000 2.81000 0.18622 0.01164 

 

Table 8: Parallel performance of the algorithm for 𝑮𝒓 = 𝟑 𝒅𝒕 = 𝟎. 𝟏 on different parallel workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 4.56000 0.31000 10.60000 2.32456 1.16228 

𝑷 = 𝟒 4.45000 0.51000 10.60000 2.38202 0.59551 

𝑷 = 𝟖 7.84000 3.51000 10.60000 1.35204 0.16901 
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𝑷 = 𝟏𝟐 21.18000 14.96000 10.60000 0.50047 0.04171 

𝑷 = 𝟏𝟔 56.55000 48.48000 10.60000 0.18744 0.01172 

 

Table 9: Parallel performance of the algorithm for 𝑮𝒓 = 𝟒 𝒅𝒕 = 𝟎. 𝟏 on different parallel workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency 

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 11.16000 0.44000 26.17000 2.34498 1.17249 

𝑷 = 𝟒 11.10000 1.39000 26.17000 2.35766 0.58941 

𝑷 = 𝟖 45.24000 21.76000 26.17000 0.57847 0.07231 

𝑷 = 𝟏𝟐 56.52000 39.36000 26.17000 0.46302 0.03859 

𝑷 = 𝟏𝟔 88.34000 75.34000 26.17000 0.29624 0.01852 

 

Table 10: Parallel performance of the algorithm for 𝑮𝒓 = 𝟓 𝒅𝒕 = 𝟎. 𝟏 on different parallel 

workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 23.06000 0.74000 52.06000 2.25759 1.12879 

𝑷 = 𝟒 21.02000 1.66000 52.06000 2.47669 0.61917 

𝑷 = 𝟖 55.28000 26.54000 52.06000 0.94175 0.11772 

𝑷 = 𝟏𝟐 182.19000 67.46000 52.06000 0.28575 0.02381 

𝑷 = 𝟏𝟔 414.87000 345.00000 52.06000 0.12549 0.00784 

 

Table 11: Parallel performance of the algorithm for 𝑮𝒓 = 𝟏 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕 on different parallel 

workers 

Number of 

Workers, 

𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communication 

time, 𝒕𝒄 (sec) 

Sequential 

time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 0.43000 0.03000 0.60000 1.39535 0.69767 

𝑷 = 𝟒 0.36000 0.06000 0.60000 1.66667 0.41667 

𝑷 = 𝟖 6.26000 5.32000 0.60000 0.09585 0.01198 

𝑷 = 𝟏𝟐 14.48000 10.41000 0.60000 0.04144 0.00345 
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𝑷 = 𝟏𝟔 16.39000 12.64000 0.60000 0.03661 0.00229 

Table 12: Parallel performance of the algorithm for 𝑮𝒓 = 𝟐 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕 on different parallel 

workers 

Number of 

Workers, 

𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communication 

time, 𝒕𝒄 (sec) 

Sequential 

time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 2.79000 0.15000 6.45000 2.31183 1.15591 

𝑷 = 𝟒 2.80000 0.56000 6.45000 2.30357 0.57589 

𝑷 = 𝟖 9.85000 6.90000 6.45000 0.65482 0.08185 

𝑷 = 𝟏𝟐 21.62000 17.65000 6.45000 0.29833 0.02486 

𝑷 = 𝟏𝟔 20.93000 15.17000 6.45000 0.30817 0.01926 

 

Table 13: Parallel performance of the algorithm for 𝑮𝒓 = 𝟑 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕on different parallel 

workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency  

𝑬𝒑 =
𝑺𝒑

𝑷
 

𝑷 = 𝟐 10.99000 0.45000 23.55000 2.14286 1.07143 

𝑷 = 𝟒 9.46000 0.75000 23.55000 2.48943 0.62236 

𝑷 = 𝟖 20.87000 13.17000 23.55000 1.12841 0.14105 

𝑷 = 𝟏𝟐 30.42000 17.45000 23.55000 0.77416 0.06451 

𝑷 = 𝟏𝟔 67.49000 55.87000 23.55000 0.34894 0.02181 

 

Table 14: Parallel performance of the algorithm for 𝑮𝒓 = 𝟒 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕on different parallel 

workers 

Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency 

𝑬𝒑 =
𝑺𝒑

𝑷
 

P=2 25.48000 1.10000 57.67000 2.26334 1.13167 

P=4 22.76000 1.57000 57.67000 2.53383 0.63346 

P=8 70.50000 23.22000 57.67000 0.81801 0.10225 

P=12 100.13000 39.08000 57.67000 0.57595 0.04800 

P=16 222.47000 153.27000 57.67000 0.25923 0.01620 

 

Table 15: Parallel performance of the algorithm for 𝑮𝒓 = 𝟓 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕 on different parallel 

workers 
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Number of 

Workers, 𝑷 

Parallel 

time, 𝒕𝒑 

(sec) 

Communicatio

n time, 𝒕𝒄 (sec) 

Sequentia

l time, 𝒕𝒔 

(sec) 

Speedup 

𝑺𝒑 =
𝒕𝒔

𝒕𝒑
 

Efficiency 

𝑬𝒑 =
𝑺𝒑

𝑷
 

P=2 51.02000 2.37000 113.79000 2.23030 1.11515 

P=4 58.51000 3.52000 113.79000 1.94480 0.48620 

P=8 126.21000 58.94000 113.79000 0.90159 0.11270 

P=12 255.17000 195.67000 113.79000 0.44594 0.03716 

P=16 356.19000 250.71000 113.79000 0.63219 0.04129 

In the following sections the obtained results are visualized and interpreted. 

 

8. Analysis of Parallel Time:  

To see the reduction in computing time the simulation of 3D acoustic wave equation the designed 

algorithm is run on 2, 4, 8, 12 and 16 parallel workers independently. While the grid is refined by a factor 

of 1, 2, 3, 4 and 5 that is 20 × 20 × 20, 40 × 40 × 40, … ,100 × 100 × 100 mesh size respectively. The 

parallel computing time are noted for the 5, 10, and 15 time steps as shown in the following Figures 5 (a-

c). It is found that the parallel time is reduced on 𝑃 = 2 and 𝑃 = 4 for all three cases but for higher number 

of workers and more refined mesh the parallel time is increased. However, for the small mesh size the 

𝑃 = 8 workers are also suitable. But more than 𝑃 = 8 workers are not suitable due to the communication 

time. Also, the parallel computing time increases approximately exponentially.   

 
Figure 5(a): Parallel computing time at different grid refinements 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟐. 

 

 
 



KJMR VOL.02 NO. 01 (2025) PARALLEL PERFORMANCE OF... 

   

pg. 24 
 

Figure 5(b): Parallel computing time at different grid refinements 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟏. 

 
Figure 5(c): Parallel computing time at different grid refinements 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕 

9. Analysis of Communication Time: 

Similarly, the communication time with respect to different number of workers and grid refinement factor 

has been analyzed and shown in the following Figure 6. The behavior of communication time is also 

exponentially increasing as the data size increases to be shared among the processors. 

 

   

Figure 6: Communication time, 𝒕𝒄 at different grid refinements, 𝑮𝒓 and at time step 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕. 

 

10. Analysis of Parallel Speed Up: 
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Speed up is an important performance metric that is mainly used to see how fast the parallel algorithm 

works as compared to sequential algorithm. The speed up of the designed parallel algorithm for 3D 

acoustic wave equation is analyzed for the different time steps. By increasing the time steps the 

number of mesh points increases. For three different values of dt the speed up is determined as shown 

in the following Figures 7 (a-c). For 𝑑𝑡 = 0.2 the maximum speed up is achieved for 𝐺𝑟 = 5 on 𝑃 =
4 workers and the maximum speed up is obtained at 𝐺𝑟 = 3 on 𝑃 = 2. Similarly, for 𝑑𝑡 = 0.1 the 

maximum speed up is achieved for 𝐺𝑟 = 5 on 𝑃 = 4 workers, the maximum speed up is obtained at 

𝐺𝑟 = 2 on 𝑃 = 2 and maximum speed up is observed at 𝐺𝑟 = 3 on 𝑃 = 8. Finally, for 𝑑𝑡 = 0.067 

the maximum speed up is achieved for 𝐺𝑟 = 5 on 𝑃 = 4 workers, the maximum speed up is obtained 

at 𝐺𝑟 = 2 on 𝑃 = 2 and maximum speed up is observed at 𝐺𝑟 = 3 on 𝑃 = 8. It is concluded that 

among all the workers 𝑃 = 4 workers is the best choice for large mesh sizes. 

 

 
Figure 7(a): Speed up at different grid refinements, 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟐. 

 
Figure 7(b): Speed up at different grid refinements, 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟏. 
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Figure 7(c): Speed up at different grid refinements, 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕. 

                                    11. Analysis of Parallel Efficiency: 

Parallel efficiency is also an important performance metric that is mainly used to see how efficiently 

the parallel algorithm works as compared to sequential algorithm. The efficiency of the designed 

parallel algorithm for 3D acoustic wave equation is analyzed for the different time steps. For three 

different values of 𝑑𝑡 the speed up is determined as shown in the following Figures 8 (a-c). For all 

cases 𝑑𝑡 = 0.2 the maximum efficiency is achieved for 𝐺𝑟 = 3 on 𝑃 = 2 workers and the maximum 

efficiency is obtained at 𝐺𝑟 = 3 on 𝑃 = 2 then for 𝐺𝑟 = 5 on 𝑃 = 4. Similarly, for 𝑑𝑡 = 0.1 the 

maximum efficiency is achieved for 𝐺𝑟 = 5 on 𝑃 = 4 workers, the maximum speed up is obtained at 

𝐺𝑟 = 2 on 𝑃 = 2 and maximum speed up is observed at 𝐺𝑟 = 3 on 𝑃 = 8. Finally, for 𝑑𝑡 = 0.067 

the maximum efficiency is achieved for 𝐺𝑟 = 2 on 𝑃 = 2 workers, the maximum speed up is obtained 

at 𝐺𝑟 = 2 on 𝑃 = 2 It is concluded that among all the workers 𝑃 = 2 and 𝑃 = 4 workers are the best 

choice for large mesh sizes. 

 

Figure 8(a): Parallel efficiency at different grid refinements, 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟐. 
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Figure 8(b): Parallel efficiency at different grid refinements, 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟏. 

 
 

 
Figure 8(c): Parallel efficiency at different grid refinements, 𝑮𝒓 and time step 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕. 

12. Analysis of Message Passing Profiles: 

In this study the message passing interface (MPI) of MATLAB is used for parallel implementation of the 

designed algorithm. Therefore, the MPI profiles of each run of the program are also obtained to see the 

communication patterns among the workers. Few samples of MPI profiles of the parallel algorithm for 

𝑃 = 2, and 𝑃 = 4 are shown by the Figure 9 and Figure 10 respectively. These profiles are useful to know 

about the amount of data exchanged among the workers, communication time among the workers and 

communication waiting time to synchronize the computations. In the figures a pair wise comparison 

between the workers is provided the values of the data transfer, communication time and communication 

waiting time labeled by a color bar on the right of the figures. 
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Figure 9: Message passing profiles using 4(four) parallel workers at 𝑮𝒓 = 𝟑 and at 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕, 

(a) Maximum amount of data exchanged among workers, (b) Maximum communication time per 

worker, (c) Maximum communication waiting time per worker. 

 

Figure 10: Message passing profiles using 8(eight) parallel workers at 𝑮𝒓 = 𝟑 and at 𝒅𝒕 = 𝟎. 𝟎𝟔𝟕,  

(a) Maximum amount of data exchanged among workers, (b) Maximum communication time per 

worker, (c) Maximum communication waiting time per worker. 
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Conclusion:  

This study developed a parallel algorithm for the numerical simulation of the 3D acoustic wave equation 

using the FDTD method. The algorithm was implemented on a shared memory parallel system utilizing 

MATLAB's parallel computing capabilities. A 3D rectangular domain was selected, defined by specified 

initial and boundary conditions. The algorithm employed a data-parallel approach, with data distribution 

and message-passing schemes designed to align with the discretization scheme. The proposed parallel 

algorithm demonstrated significant efficiency, achieving up to a 3-fold reduction in computational time 

compared to its sequential counterpart. Optimal performance was observed when using 2–4 workers, but 

efficiency declined with more workers due to increased communication overhead. Additionally, 

communication time increased exponentially with finer grid refinement or a larger number of workers, 

posing limitations to scalability. These findings underscore the potential of parallel computing for 

enhancing the efficiency of large-scale numerical simulations while highlighting the need to balance 

computational and communication costs. 
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