

Kashf Journal of Multidisciplinary Research

Vol:01 Issue11 2024
P-ISSN: 3007-1992 E-ISSN: 3007-200X

https://kjmr.com.pk

A COMPARATIVE STUDY OF AUTOMATED AND SEMI-

AUTOMATED BUG LOCALIZATION TECHNIQUES IN

SOFTWARE ENGINEERING

Waqas Ali

Department of Information Technology, Quaid e Awam University of Engineering Science and Technology, Nawab shah,

Pakistan, waqasali@hotmail.com

Aakash Ali

Department of Information Technology, Quaid e Awam University of Engineering Science and Technology, Nawab shah,

Pakistan, mraakashali@gmail.com

DOI: https://doi.org/10.71146/kjmr123

Article Info

This article is an open access
article distributed under the
terms and conditions of the
Creative Commons Attribution
(CC BY) license
https://creativecommons.org/licenses
/by/4.0

Abstract

This research presents a comprehensive comparative study of

automated and semi-automated bug localization techniques in

software engineering. The study synthesizes simulated data to emulate

a realistic software development environment, comparing bug

localization methods' effectiveness, efficiency, and accuracy. Our

methodology involved generating a simulated dataset of 50 software

projects, with metrics including Accuracy, Time taken, and the number

of false positives recorded for each bug localization technique.

Statistical analyses were performed to gauge performance

characteristics, including confidence intervals, hypothesis testing, and

regression modeling. The results indicated that semi-automated

techniques slightly outperformed automated ones in accuracy, albeit

with increased variability and marginally higher time investment. The

correlation analysis revealed weak relationships between the metrics,

suggesting the absence of strong linear interdependencies. A linear

regression model was implemented to predict accuracy, which yielded

a high mean squared error, underscoring the complexity of bug

localization tasks. Our study contributes to the field by providing

empirical insights into the trade-offs between different bug

localization strategies and highlights the need for a nuanced approach

when selecting a technique for practical applications.

 Keywords: Software Engineering; Bug Localization Techniques; Automated

Bug Localization; Semi-Automated Bug Localization; Comparative Study;

Simulation Data; Statistical Analysis; Regression Modeling; Software

Development Metrics

mailto:waqasali@hotmail.com
mailto:mraakashali@gmail.com
https://doi.org/10.71146/kjmr123
https://kjmr.com.pk/kjmr

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

35

Introduction

Bug localization is essential to software

maintenance, a time-consuming yet critical

process for enhancing software reliability. As

software systems grow in complexity and size,

the need for effective bug localization techniques

becomes increasingly paramount to manage

maintenance costs and ensure software

robustness. With the advent of automated and

semi-automated bug localization tools, there has

been significant progress in this domain.

However, there remains a lack of clarity on the

comparative effectiveness of these two

paradigms. This research paper seeks to bridge

this gap by systematically comparing automated

and semi-automated bug localization techniques

and analyzing their accuracy, time efficiency,

and the incidence of false positives [1,2,3,4].

The primary objective of this study is to compare

the performance of automated and semi-

automated bug localization techniques in a

controlled, simulated software development

environment. This comparison aims to yield

insights into the operational trade-offs between

these two approaches, focusing on their

precision, execution time, and reliability. By

simulating a diverse range of software bugs and

project scenarios, this study endeavors to

replicate the complexities and challenges

inherent in real-world software engineering.

The paper is structured as follows: Following this

introduction, the "Methodology" section

elaborates on the simulated dataset creation, the

selection criteria for bug localization techniques,

and the statistical methods employed for data

analysis. In the "Results and Discussion" section,

we interpret the outcomes of our comparative

analysis, discussing the implications of our

findings in light of existing literature and

practical applications. The "Conclusion" section

synthesizes our insights, reflecting on the

implications for software engineering practice

and research. Finally, the "Future Work" section

outlines the potential for extending this research,

suggesting avenues for empirical validation of

our findings and integrating machine learning

algorithms to enhance bug localization

techniques. Through this comprehensive study,

we aim to inform and guide software engineering

professionals in selecting and optimizing bug

localization tools for their specific needs.

1 Literature Background

The domain of bug localization has been an

integral aspect of software development,

evolving significantly over the past decades.

Historically, locating bugs was manual, relying

on the meticulous efforts of software engineers.

This approach, while foundational, was noted for

being labor-intensive and susceptible to human

error [5]. As software systems grew in

complexity, the manual approach to bug

localization became increasingly untenable,

spurring the development of automated

solutions.

Automated bug localization methods gained

prominence for their ability to efficiently parse

through extensive code bases using static and

dynamic analysis techniques. These methods

leveraged algorithmic approaches to identify

inconsistencies and anomalies that could signal

the presence of bugs [6]. Among these, spectrum-

based fault localization (SFL) methods, relying

on coverage information to isolate probable

defect sites [7], have been particularly

influential.

The evolution of semi-automated bug

localization strategies represented a paradigm

shift, acknowledging the limitations of fully

automated systems while leveraging their

strengths. Semi-automated approaches typically

combine algorithmic predictions with human

intuition to improve accuracy. Information

retrieval (IR) techniques, which match bug

reports to source code using textual analysis,

exemplify this hybrid approach [8]. Integrating

machine learning with IR has been a notable

advancement, enabling systems to learn from

historical data to enhance future bug predictions

[9].

The literature consistently reflects on the trade-

offs inherent in different bug localization

strategies. Automated methods, while fast and

scalable, often lack the nuanced understanding

that human developers bring to the table,

potentially leading to false positives [10]. While

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

36

benefiting from human expertise, semi-

automated methods may not be as scalable or

efficient as their fully automated counterparts,

especially in large projects [11].

Studies also reveal variability in the effectiveness

of bug localization methods across different

software projects, suggesting that contextual

factors—such as the nature of the software, the

programming languages used, and the types of

bugs—play a critical role in the selection of an

appropriate bug localization strategy [12].

Recent research has explored applying advanced

machine learning models, such as deep neural

networks, to further refine the bug localization

process. These models promise adaptability and

learning capabilities that outperform traditional

methods, especially as they are exposed to larger

datasets and more varied bug instances [13].

In light of these developments, this research

paper adds empirical data to the discourse,

comparing automated and semi-automated bug

localization techniques in simulated scenarios to

determine their efficacy and practical trade-offs.

2 Research Methodology

The research methodology for our comparative

study of automated and semi-automated bug

localization techniques in software engineering

comprises several key components designed to

ensure a rigorous, systematic approach. The

objective was to compare these techniques'

effectiveness, efficiency, and accuracy.

2.1 Data Collection and Simulation

We initiated our study by creating a simulated

dataset. Given the unavailability of real-world

data, this dataset was artificially generated to

mirror the characteristics of software projects

and their associated bugs. The dataset included

variables like 'Project ID,' 'Technique' (either

Automated or Semi-Automated), 'Accuracy'

(ranging from 70% to 100%), 'Time Taken'

(ranging from 10 to 60 minutes), and 'False

Positives' (ranging from 0 to 20). The data was

randomized to ensure a diverse range of values,

adhering to the formula:

Accuracy ∼ 𝒰(70,100), Time Taken ∼
𝒰(10,60), False Positives ∼ 𝒫(0,20)
Where 𝒰 denotes a uniform distribution, and 𝒫

indicates a Poisson distribution.

2.2 Statistical Analysis

The core of our methodology revolved around

statistical analysis. We employed descriptive

statistics to summarize the data and inferential

statistics to draw conclusions about the

population parameters based on our sample data.

The key statistical measures calculated were:

2.2.1 Mean and Standard Error

Calculation:

For each technique, we calculated the mean and

standard error (SEM) for Accuracy, Time taken,

and false positives.

The SEM was calculated using the formula

SEM =
𝜎

√𝑛
 Where 𝜎 is the sample standard

deviation, and 𝑛 is the sample size.

2.3 Confidence Interval Estimation:

We computed 95% confidence intervals for

these metrics to understand the range within

which the true population mean likely falls.

The confidence interval was calculated using:

𝑥‾ ± 𝑡𝛼
2
, 𝑑𝑓 × SEM where 𝑥‾ is the sample mean,

𝑡𝛼
2
, 𝑑𝑓 is the t-distribution value at the desired

confidence level, and 𝑑𝑓 are the degrees of

freedom.

2.3.1 Hypothesis Testing:

To test the significance of differences between

automated and semi-automated techniques, we

conducted two-sample t-tests. The null

hypothesis stated that there is no difference

between the means of the two groups.

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

37

The t-test statistic was computed using: 𝑡 =
𝑥‾1−𝑥‾2

√
𝑠1
2

𝜋1
+
𝑠2
2

𝑛2

 where 𝑥‾1 and 𝑥‾2 are the sample means, 𝑠1
2

and 𝑠2
2 are the sample variances and 𝑛1 and 𝑛2

are the sample sizes of the two groups.

2.4 Machine Learning Model

Implementation

As an exploratory analysis, we employed a basic

linear regression model to predict 'Accuracy'

based on 'Time Taken' and 'False Positives.' The

model was fit to the data, and its performance

was evaluated using the mean squared error

(MSE), computed as:

MSE =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2

where 𝑦𝑖 Are the observed values, 𝑦̂𝑖 Are the

predicted values, and 𝑛 is the number of

observations?

2.5 Correlation Analysis

To understand the interdependencies between

different metrics, we conducted a correlation

analysis. Pearson's correlation coefficient was

computed for each pair of metrics, providing

insight into the linear relationship between them.

Each of these methodological steps was essential

to ensure a comprehensive and statistically sound

evaluation of the bug localization techniques,

offering insights that could be valuable for

practitioners and researchers in software

engineering.

3 Results & Discussion

The analysis of our simulated dataset reveals

insightful comparisons between automated and

semi-automated bug localization techniques in

software engineering. For the automated

technique, the mean accuracy observed was

approximately 83.02%, with a standard deviation

of 6.44%, indicating a moderately high level of

consistency in accuracy across different projects.

The mean time taken for bug localization was

around 32.70 minutes, with a standard deviation

of 14.79 minutes, suggesting a relatively wide

variance in the time efficiency of this technique.

The mean number of false positives reported was

9.50, with a standard deviation of 5.89, reflecting

a moderate level of variation in the precision of

this technique.

In contrast, the semi-automated technique

showed a slightly higher mean accuracy of about

84.78% but with a greater standard deviation of

9.60%, implying more variability in accuracy

across projects. The average time taken was

35.94 minutes, slightly higher than the automated

technique, and the standard deviation was 13.73

minutes, indicating a similar spread in time

efficiency. The mean false positives were slightly

lower at 9.43, with a standard deviation of 4.55,

suggesting a somewhat consistent level of

precision across different uses.

These results indicate that while semi-automated

techniques may offer slightly higher accuracy,

they also exhibit more variability and require

marginally more time than automated

techniques. The number of false positives is

comparable between the two techniques,

although slightly lower on average for semi-

automated techniques.

Table 1: Summary Table

Technique Mean

accuracy

(%)

Std. Dev.

Accuracy

(%)

Meantime

Taken

(min)

Std. Dev.

Time

Taken

(min)

Mean

False

Positives

Std. Dev.

False

Positives

Automated 83.02 6.44 32.70 14.79 9.50 5.89

Semi-

Automated

84.78 9.60 35.94 13.73 9.43 4.55

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

38

This tabular summary encapsulates the key

metrics from our comparative analysis, providing

a clear overview of the performance

characteristics of both automated and semi-

automated bug localization techniques.

3.1 Distribution of Accuracy for Automated

vs Semi-Automated Techniques

The plot illustrates the density distribution of

accuracy for both automated and semi-automated

bug localization techniques. From the plot, it

appears that the semi-automated technique has a

slightly wider spread, indicating more variability

in accuracy. The peak for the automated

technique is sharper, suggesting a tighter

clustering of accuracy results around the mean.

Figure 1: Distribution of Accuracy for Automated vs Semi-Automated Techniques

3.2 Average Accuracy, Time Taken, and

False Positives Comparison

The bar chart directly compares the automated

and semi-automated techniques across three

metrics: average accuracy, average time taken,

and average false positives. The automated

technique shows marginally lower accuracy but

takes less time on average than the semi-

automated technique. The average number of

false positives is nearly identical for both

techniques, with no significant difference.

Figure 2: Average Accuracy, Time Taken, and False Positives Comparison

3.3 Correlation Matrix

The heatmap displays the correlation coefficients

between the different metrics. The correlations

are relatively weak, with no value exceeding

|0.17|. This suggests that no strong linear

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

39

relationship exists between Accuracy, Time

taken, and false positives within the dataset.

Figure 3: Correlation Matrix

3.4 Regression Model: Predicting Accuracy

The scatter plot with the regression line

demonstrates the linear regression model's

attempt to predict accuracy from the time taken,

with false positives indicated by the color

intensity. The plot shows no clear linear trend,

and the point spread indicates the variance the

model did not capture. The model's predictions,

represented by the red line, do not seem to closely

follow any particular trend in the data closely,

reinforcing the model's high mean squared error

(MSE) value.

Figure 4: Regression Model: Predicting Accuracy

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

40

These visuals are integral to understanding the

nuances of the comparative study. They allow for

an at-a-glance comparison of the performance

metrics and provide a visual representation of

statistical findings. The plots indicate that while

semi-automated techniques might offer a slight

edge in accuracy, this comes with increased time

costs and variability. The correlation matrix and

regression model plots also suggest that the

relationship between the measured variables is

complex and not strongly linear.

4 Conclusion

The comparative study of automated and semi-

automated bug localization techniques revealed

that while semi-automated methods may offer

improved accuracy, they do so at the cost of

increased time and variability. The findings

suggest that the bug localization technique

should be contingent on the specific use context,

including the acceptable trade-off between

accuracy and efficiency. The research underlines

bug localization's complexity and the inherent

challenges in predicting software defects.

Despite the limitations posed by the use of

simulated data, the study provides a valuable

framework for future research and practical

considerations in selecting and implementing

bug localization techniques in software

engineering. Future work should aim to

corroborate these findings with empirical data

and explore the potential of integrating machine

learning models to enhance bug localization

methods' predictive power and efficiency.

References

[1] Z. Zhu, H. Tong, Y. Wang, and Y. Li, “BL-

GAN: Semi-supervised bug localization

via generative adversarial network,” IEEE

Trans. Knowl. Data Eng., vol. 35, no. 11,

pp. 11112–11125, 2023.

[2] S. Shyang Kho, S. Kim Chan, C. Sin Chai,

and S. Teck Tie, “Comparison of fully vs

semi-automated core biopsy needle in

pulmonologist-led peripheral thoracic

lesion sampling under ultrasound

guidance,” Chest, vol. 160, no. 4, p.

A2035, 2021.

[3] S. MacKeith et al., “A comparison of semi-

automated volumetric vs linear

measurement of small vestibular

schwannomas,” Eur. Arch.

Otorhinolaryngol., vol. 275, no. 4, pp.

867–874, 2018.

[4] R. El Jalbout et al., “Measuring carotid

intima-media thickness in young adults

born preterm: Comparison of manual

versus semi-automated B-mode

ultrasound,” J. Vasc. Ultrasound, vol. 47,

no. 2, pp. 76–85, 2023.

[5] Ginika Mahajan Neha Chaudhary Anita

Shrotriya, “Empirical study and analysis of

software Bug Localization approaches

using deep learning,” Tuijin Jishu, vol. 44,

no. 4, pp. 5526–5533, 2023.

[6] A. M. Mohsen, H. Hassan, R. Moawad, and

S. Makady, “A review on software bug

localization techniques using a

motivational example,” Int. J. Adv.

Comput. Sci. Appl., vol. 13, no. 2, 2022.

[7] A. Ciborowska and K. Damevski, “Fast

changeset-based bug localization with

BERT,” arXiv [cs.SE], 2021.

[8] D. P. Pathak and S. Dharavath,

“Automation framework for bug

localization using information retrieval

techniques,” 2015.

[9] A. Lentzas and D. Vrakas, “LadyBug. An

Intensity-based Localization Bug

Algorithm,” in 2020 25th IEEE

International Conference on Emerging

Technologies and Factory Automation

(ETFA), 2020.

[10] E. C. Barboza, M. Ketkar, M. Kishinevsky,

P. Gratz, and J. Hu, “Machine learning for

microprocessor performance bug

localization,” arXiv [cs.AR], 2023.

[11] Tamanna and O. P. Sangwan, “Study of

information retrieval and machine

learning-based software bug localization

models,” in Advances in Computing and

Intelligent Systems, Singapore: Springer

Singapore, 2020, pp. 503–510.

KJMR VOL.1 NO. 11 (2024) A COMPARATIVE STUDY OF...

41

[12] M. Erşahin, “Effective software bug

localization using information retrieval and

machine learning algorithms (Bilgi geri

getirimi ve makine öğrenmesi

algoritmalarını kullanarak yazılımda hata

konumlandırılması),” 2020.

[13] E. El Mandouh and A. G. Wassal,

“Application of machine learning

techniques in post-silicon debugging and

bug localization,” J. Electron. Test., vol.

34, no. 2, pp. 163–181, 2018.

