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Abstract. 
Traffic congestion in urban areas can be a nightmare for emergency vehicles as they are 

slowed down by the traffic condition, thus putting the patients' lives at risk for whom medical 

attention is urgently needed. Traditional visual and acoustic identification methods, such as 

flashing lights and sirens often fall short due to multiple factors like driver distraction, 

obstruction in the line of sight either by any vehicle or building, and even the advanced 

soundproofing features of modern vehicles could be a reason. This research is all about 

designing the correct and efficient real-time system that detects and distinguishes between 

emergency vehicle sounds so drivers, pedestrians, and also the management systems in their 

vicinity have prompt recognition and reactions to those sounds. To accomplish this, the 

proposed solution utilizes acoustic analysis along with sophisticated, cutting-edge 

algorithms by applying features extraction using Mel-frequency cepstral coefficients 

(MFCC). A wide range of machine learning algorithms, including Random Forest (RF), 

Support Vector Machine (SVM), Multilayer Perceptron (MLP), Extra Trees Classifier 

(ETC), and AdaBoost, were trained and tested using a comprehensive dataset consisting of 

emergency vehicle sirens and background traffic noise. Among them, the accuracy of 

Random Forest classifier is the highest, which reaches 99.17%, and AdaBoost classifier has 

similar performance. In this way, this system uses sound-based detection to enhance 

emergency response, public safety, and traffic management with innovative acoustic 

monitoring and analysis. The implementation of the system will streamline emergency 

operations and improve the efficiency and safety of urban traffic. 
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Introduction 

With every passing year, the number of humans is 

multiplying exponentially, which in turn requires 

more transport vehicles to carry them. This places us 

in the problem of traffic congestion, especially during 

rush hours, where we can witness the distressing 

incidents of ambulances or other emergency vehicles 

stuck in lengthy queues or getting late to serve. These 

emergency vehicles help save the lives of persons at 

risk and also play a crucial role in controlling or 

preventing any kind of calamity. But these traffic 

jams can severely hinder their passage which worsens 

an already exacerbated situation. 

Typically, the traditional method used in emergency 

vehicles is sirens. Their purpose is to emit sound 

signals at different wavelengths to alert drivers on the 

road and pedestrians to clear the way. However, there 

are many instances where drivers of private cars may 

not perceive nearby sirens due to multiple factors 

such as in-car audio interference, the soundproofing 

capabilities of modern cars, or other distractions. 

These factors can bring unintentional delays to 

emergency services and potential traffic accidents 

due to inadequate communication and cooperation. 

In general, distress sounds are categorized as a subset 

of International Organization for Standardization 

(ISO)-standardized auditory danger signals (Tran & 

Tsai, 2020). ISO 7731 stipulates fundamental 

requirements for alarm noises. Nevertheless, 

standards and regulations regarding distress noises 

differ among nations. For instance, it is commonplace 

for the United States and New Zealand to utilize 

phasers and wails, whereas England predominantly 

employs the two-tone pneumatic horn. In Taiwan, the 

frequency range of fire truck sirens is continuously 

shifting from 650-750 Hz to 1450-1550 Hz, whereas 

ambulance sirens feature alternating tones: 650-750 

Hz for the initial tone and 900-1000 Hz for the 

second. 

Similarly, ambulance sirens in Japan are governed by 

specific regulations that mandate the use of two 

masses of 770 Hz and 960 Hz with a 1.3-second 

repetition period. Two tons of 392 Hz and 660 Hz are 

frequently employed by ambulances and fire vehicles 

in Europe, whereas two tons of 466 Hz and 622 Hz 

are utilized by police cars (Tran & Tsai, 2021). Thus, 

the traditional methods are now outdated, as self-

driven automobiles are replacing the auto sector, and 

the technology for detecting emergency vehicles 

should be updated with time. 

Literature Review 

Since the emergence of self-driven automobiles like 

Tesla and the increase in population, we have been 

trying to shift to AI-based solutions for detecting 

ambulances and other emergency vehicles. A lot of 

research has already been done by scientists, and we 

are going to explore each one of them one by one. 

For instance, Usaid et al. (2022) used acoustic-based 

detection methods to develop a Multi-Layer 

Perceptron (MLP) model using an emergency siren 

dataset. This system was extremely feasible because 

it achieved 90% accuracy with just 300 files. 

Similarly, Lisov et al. (2023) used the same method 

but with Convolutional Neural Networks (CNNs) to 

analyze spectrograms and achieved an accuracy of 

93.3% in identifying emergency vehicle sounds with 

rapid recognition speeds. 

Patel et al. (2022) proposed a system integrating 

neural network-based siren detection with 97.2% 

accuracy by utilizing IoT (Internet of Things) devices 

and GPS to create temporary emergency lanes. This 

research uses visual indicators on the route to alert 

traffic, ensuring faster ambulance transit. Likewise, 

some advanced AI techniques like CNNs with Mel-

Frequency Cepstral Coefficients for sound 

conversion were used by Sathruhan et al. (2022), 

achieving 93% precision in siren detection. Tran & 

Tsai (2021) introduced an audio-visual detection 

system (AV-EVD) by combining YOLO-EVD for 

image-based detection and WaveResNet for sound-

based emergency vehicle detection, achieving 

accuracy exceeding 95% and 98%, respectively. 

Simplified and efficient models such as Extreme 

Learning Machines (ELMs) were leveraged by Islam 

& Abdel-Aty (2022) for audio-only detection at 
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signalized intersections. This approach struck a 

balance between simplicity and a high accuracy of 

97% in quick real-time learning. 

Mittal & Chawla (2023) developed an ensemble deep 

neural network model that was optimized 

configurations of CNN, Dense, and RNN models, 

resulting in an accuracy of 98.7%. Siren Net (Tran & 

Tsai, 2020) uses hybrid Wave Net and MLNet 

architectures to achieve the high accuracy for siren 

detection from a variety of traffic sounds. In noisy 

environments, this method maintains an accuracy of 

98.24%. 

For spectrogram-based localization, Marchegiani & 

Newman (2022) used image processing techniques on 

spectrograms for emergency vehicle detection and 

sound source localization. Their system achieved a 

94% classification rate with minimal localization 

errors, even under noisy conditions. Also the, 

Cantarini et al. (2022) leveraged prototype networks 

with few-shot metric learning for siren detection. 

Using limited data and noise-filtering techniques, 

their system achieved SVM accuracy of 95% and 

CNN accuracy of 83–87%.Eventually , 

Dontabhaktuni et al., 2024 used the MFCC 

methodology but achieved low frequency in SVM as 

compare to us. 

From this analysis, several gaps were identified, such 

as the limitation in the availability and diversity of 

datasets. Many studies relied on custom or specific 

datasets, which may not fully represent real-world 

scenarios and limit the generalizability of the models. 

The second concern is the potential for overfitting, 

where models may perform exceptionally well on the 

specific data they were trained on but struggle to 

generalize to new and unseen data. Therefore, we aim 

to address this void in the upcoming methodology. 
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Methodology 

In order to analyze emergency vehicle sounds in 

traffic, we used a dataset from Kaggle that underwent 

preprocessing to ensure consistency and 

computational efficiency. The audio files were 

standardized using resizing techniques and 

transformed into structured representations through 

Mel-Frequency Cepstral Coefficients (MFCC), 

which were responsible for capturing the essential 

sound features of emergency vehicles, such as timbre 

and pitch. 

These extracted features were organized into a 

structured dataset to split it further into the training 

and testing sets.  After that different machine learning 

models which includes the Support Vector Machines 

(SVM), K-Nearest Neighbors (KNN), decision trees, 

random forests, and Multi-Layer Perceptron (MLP), 

were trained using the training set. Later the 

Hyperparameter optimization was employed using 

grid and random search to enhance model 

performance. 

Eventually, the models were evaluated on the testing 

set, and the one with the highest classification 

accuracy was selected as the final model for 

emergency vehicle sound classification. A systematic 

flow, starting from data acquisition, followed by 

preprocessing, feature extraction, model training, 

hyperparameter tuning, and ending with evaluation, 

was followed to ensure reliable and replicable results. 

See methodology diagram in figure 1.  

 

 

 

 

 

 

 

Figure 1: Methodology Diagram. 

Dataset 

Dataset which is being used here was publicly 

available on Kaggle collection with the name of 

“Emergency Vehicle Siren Sounds”, having diverse 

collections of audio recordings, specifically for 

Ambulance and Firetrucks. Each file in dataset was in 

WAV format, with a fixed duration of 3 seconds. 

Also, it is divided into three categories: Ambulance, 

Firetruck, and Traffic. Each category contains 200 

audio files, resulting in a balanced distribution of 

samples across the different classes as shown in 

Figure 2. 

For each audio file, there are corresponding 

spectrogram images to have a visual representation of 

frequency content of the audio signals, resulting in a 

total of 200 spectrogram images per audio file. Here, 

we had the option to augment the audio files, similar 

to Hashmi et al., 2024. However, they worked on 

deep learning, whereas we focused on classic 

machine learning, so we had to drop that idea. 

 

Figure Error! No text of specified style in document.: 

Distribution of the Dataset across different classes. 

Preprocessing 

Audio files often have varying samples rate which 

leads to inconsistencies during the data processing. In 

0
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order to cope with it , we apply resampling across all 

files which ensures consistent time resolutions and 

compatibility for analysis . The sample rate, measured 

in Hertz (Hz) represent the number of audio samples 

recorded per second. Standardizing this rate is crucial 

for extracting reliable features like MFCCs, which 

depend on uniform time scale. So, in order to do that, 

we used  “librosa.resample”, where audio signals are 

resampled to a target rate of 22,500 Hz , while 

preserving their integrity and essential characteristics 

, helping us to enhance the dataset consistency , 

improving the quality of feature extraction, modeling 

, and classifications task. 

Feature Extraction  

After the preprocessing comes the step of Feature 

Extraction for sound classification which is later used 

for the identification of the key attributes from Audio 

Signals. In acoustic analysis different techniques 

such as the wavelet analysis , chroma features, 

centroid-based methods, and Mel-Frequency 

Cepstral Coeffiecnt (MFCC) ensures the accurate 

analysis of audio datasets. In our study, features were 

extracted from emergency vehicle audio signals to 

facilitate classification tasks. 

Here the Mel-Frequency Cepstral Coefficients 

(MFCCs) are used because of their ability to 

compactly represent the spectral shape of audio 

signals. The process involves transforming the audio 

Singal into a perceptual Mel scale and extracting 

coefficient using a combination of spectral analysis 

and the Discrete Cosine Transform. Major steps to 

extract MFCC features obtained from (Wu et al., 

2018) are shown in Figure 3. 

 

Figure Error! No text of specified style in 

document.: Steps to Extract MFCC features. 

On the other hand, spectrograms provide a visual 

representation of an audio signal's frequency and 

amplitude over time. This study uses Librosa, a 

Python library, to dynamically generate Mel 

spectrograms by aligning the audio data with 

perceptual attributes on the Mel scale. This 

approach saved storage space by transforming 

the audio files into Mel spectrograms on the fly, 

whereas, in traditional methods, they were pre-

stored on the disk for computation. There is no 

single formula in the literature for the Mel scale, 

but one of the formulas mentioned by 

O'Shaughnessy (1987) is presented here. 

𝑚𝑒𝑙(𝑓) = 2592 × 𝑙𝑜𝑔10 (1 +
𝑓

100
) Equ: 1 

After acquiring the Mel scale, Mel filter banks were 

formed and multiplied with previously acquired 

spectrograms to produce Mel spectrograms (Rabiner 

& Schafer, 2010). 

Classification Algorithms 

This study utilizes five classification models based on 

their proven effectiveness after critically analysis it 

with the textual data available in the related literature. 
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The models chosen are Random Forest (RF), Extra 

Tree Classifier (ETC), Support Vector Machine 

(SVM), Multi-layer Perceptron (MLP), AdaBoost, 

and Logistic Regression (LR). These models were 

customized with hyperparameter tuning to achieve 

optimal accuracy. 

For Instance, the Random Forest is an ensemble 

model that combine the predictions of multiple 

decision trees. Each tree makes a prediction and the 

final output is determined by majority voting. Here 

we utilized 100 decision trees with a maximum depth 

of 100. Similarly , the Extra Tree Classifier is an 

ensemble model that creates multiple decision trees . 

It differs from other tree-based methods by choosing 

random cut-points and using the entire training 

sample for tree construction. This randomness helps 

reduce over fitting and improve performance.  

SVM, a powerful supervised learning algorithm, uses 

kernel functions to separate data points in an n-

dimensional space and identifies the optimal 

boundary between classes.  Likewise, the MLP is a 

type of neural network which learns complex patterns 

through multiple hidden layers and adjusts weights 

during training using backpropagation. Eventually we 

have AdaBoost which improves classification 

accuracy by combining weak learners, focusing on 

the errors of previous models and giving more weight 

to accurate predictions. All these models are 

optimized with hyperparameter tuning to enhance 

performance in the classification task. 

Evaluation 

The dataset for our research, which was downloaded 

from Kaggle, was split into training and testing sets 

using a 70:30 ratio, respectively. For features 

extraction during the feature extraction step: We used 

Mel-Frequency Cepstral Coefficients (MFCC). For 

the MFCC features, two sets were further 

generated—one with 20 coefficients and another with 

40 coefficients. To evaluate the effectiveness and 

reliability of various machine learning classifiers, we 

mentioned before, these were trained and tested on 

three distinct datasets: 20 MFCC features, 40 MFCC 

features.  Later, the model evaluation was conducted 

using multiple evaluation metrics which includes 

accuracy, precision, recall, and F1 score, 

supplemented by 10-fold cross-validation. This 

comprehensive and structured approach provided 

valuable insights into the classifiers' ability to 

differentiate and classify audio samples accurately 

based on the extracted features. 

Eventually, the different machine learning classifiers 

were trained using 40 Mel-Frequency Cepstral 

Coefficient features in a grid search approach for 

hyperparameter optimization, which contains the 

following specification (see table 2): 

Table 2: Hyperparameters of classifiers. 

Model Hyperparameters 

RF random state=142, max_depth=25, 

n_estimators=50 

SVM kernel='linear', C = 1.0, cache size=2000 

MLP hidden_layer_sizes=(100,), activation='relu', 

solver='adam', alpha=0.0001, max_iter=50 

ETC random_state=142, max_depth=50 

AdaBoost  Extra Trees Classifier(n_estimators=50, 

max_depth=50, 

random_state=0),n_estimators=50 

Then, to evaluate the model, a 10-fold cross-

validation technique was utilized, and the end 
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results, including accuracy and other relevant 

metrics, are summarized below.  

From Table 3, it is evident that the Random Forest 

(RF) classifier performed exceptionally well by 

achieving a threshold of 0.9917. Particularly because 

this model holds the ability to handle high-

dimensional data and can capture complex 

relationships between features. Likewise, its 

precision, recall, and F1 score values also indicate 

strong reliability in distinguishing between classes 

and classifying them precisely.  

Table 3: Classification Accuracy with 40 

features. 

Model Accuracy F1  Precision Recall K-fold 

Accuracy 

RF 0.9917 0.99 0.99 0.99 0.97±0.02 

SVM 0.9583 0.96 0.96 0.96 0.97±0.02 

MLP 0.9833 0.98 0.98 0.98 0.98±0.01 

ETC 0.9833 0.98 0.98 0.98 0.98±0.01 

Ada 

Boost 

0.9917 0.99 0.99 0.99 0.98±0.01 

On the other hand, the Support Vector Machine 

(SVM) also performed well by achieving an accuracy 

of 0.9583. This machine learning classifier is known 

for handling non-linear data effectively by leveraging 

the kernel trick to separate classes and performing 

consistently across evaluation metrics. Additionally, 

it had a balanced F1 score, precision, and recall rate, 

which further confirm its effectiveness. 

The Multi-Layer Perceptron (MLP) and Extra Trees 

Classifier (ETC) models achieved similar 

performance levels with precisely the same accuracy 

of 0.9833. However, the AdaBoost classifier 

competed with the RF model’s accuracy of 0.9917. 

As an ensemble learning method that emphasizes 

misclassified instances during training, AdaBoost’s 

performance reflects its ability to refine predictions 

and enhance accuracy. Its F1-score, precision, and 

recall values of 0.99 further validate its effectiveness 

in contrast to other models. 

Thus, the results across all models demonstrated 

consistent reliability with minimal standard 

deviations ranging from ±0.01 to ±0.02 in K-fold 

validations.  Results of testing can be seen in 

confusion matrixes (figure 4 to 8) where 0 represents 

Ambulance, 1 represents Fire Truck, and 2 

Represents Traffic).  

 

 

Figure Error! No text of specified style in 

document.: Confusion Matrix of RF. 

 

Figure 5: Confusion Matrix of SVM. 
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Figure 6: Confusion Matrix of MLP. 

 

Figure 7 Confusion Matrix of ETC. 

 

Figure 8: Confusion Matrix of ABD. 

Result with 20 MFCC Features  

Parallel to the 40 MFCC features, we trained our 

machine learning classifiers with 20 MFCC 

features as well, using the same hyperparameter 

optimization via the grid search method given in 

Table 4.1. 

Again, a 10-fold cross-validation technique was 

applied to evaluate the models to ensure reliable 

performance assessments, the results of which 

are given in Table 4. 

Table Error! No text of specified style in 

document.: Classification Matrix of results 

with 20 MFCC features 

Classifier Accuracy Precision Recall F1 K-fold 

Accuracy 

RF 0.95 0.95 0.96 0.95 0.96 ± 

0.02 

SVM 0.93 0.94 0.94 0.94 0.94 ± 

0.03 

MLP 0.975 0.97 0.98 0.98 0.96 ± 

0.02 

ETC 0.98 0.98 0.99 0.98 0.98 ± 

0.02 

ADB 0.958 0.96 0.96 0.96 0.98 ± 

0.02 

Let's decompose the results of the performance of 

classifiers with 20 MFCC features: Once again, 

Random Forest (RF) succeeded in providing 

excellent accuracy equal to 0.95 and F1-score of 0.95. 

Support Vector Machine (SVM) is not that behind in 

results with accuracy equal to 0.93 and an F1-score of 

0.94. In case of MLP, results obtained 0.975 accuracy 

with 0.98 as the F1-score. The Extra Trees Classifier 

(ETC) matched the MLP level with 0.98 accuracy and 

F1-score. AdaBoost (ADB) also held its own, with 

0.958 accuracy and a 0.96 F1-score. 

Overall, MLP and ETC came out on top with slightly 

better numbers with 20 MFCC features as compare to 

40 MFCC features, but RF, SVM, and ADB were no 

slouches either. All in all, it's clear these models can 

handle the task well, especially with the 20 MFCC 

features.   
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Results of testing can be seen in confusion matrixes 

(figure 9 to 13) where 0 represents Ambulance, 1 

represents Fire Truck, and 2 Represents Traffic).  

 

 

Figure 9: Confusion Matrix of RF. 

 

Figure 10 Confusion Matrix of SVM. 

 

Figure 11: Confusion Matrix of MLP. 

 

Figure 12: Confusion Matrix of ETC. 

 

Figure Error! No text of specified style in 

document.: Confusion Matrix of ADB. 
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Conclusion 

In this study, we have developed a real-time system 

for detecting and classifying emergency vehicle 

sounds in urban areas using acoustic analysis and 

machine learning. After following the entire 

methodology and summarizing the results, we found 

that the Random Forest classifier achieved the highest 

accuracy, followed by another model named 

AdaBoost. Both of these models demonstrate the 

potential of audio-based methods to complement 

traditional visual identification of emergency 

vehicles. 

We can offer significant applications with this 

system, including the improvement of emergency 

response time, optimization of traffic management, 

enhancing public safety, and enabling advanced 

technological solutions. Since we have used a diverse 

dataset available over the internet, expanding the 

dataset in the future by adding a wider range of 

emergency vehicle sounds and diverse urban 

environments can improve the system's robustness. 

Also, integrating the visual and acoustic detection 

methods and testing the system in real-time urban 

traffic management will provide valuable insights 

into its practical effectiveness and vulnerabilities. 
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